On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains

In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2011-12, Vol.59 (12), p.2421-2441
Hauptverfasser: Li, Dong-Feng, O'Dowd, Noel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2441
container_issue 12
container_start_page 2421
container_title Journal of the mechanics and physics of solids
container_volume 59
creator Li, Dong-Feng
O'Dowd, Noel P.
description In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.
doi_str_mv 10.1016/j.jmps.2011.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963852247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002250961100175X</els_id><sourcerecordid>963852247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-da968314deddb81d6f34fe2d93ddb44efd02d58be2a4be7c1838bd2d244fda323</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhjOARCm8AJM3pgTfkjoSC6q4SZW6wGw58TF1SOJiO0VsPARPyJPgUmam43P8f__wZdkFwQXBpLrqim7YhoJiQgpcFxiLo2yGMaV5ievqJDsNocMYl3hBZtm0HlHcAIKd66do3YicQb2K0baANBjnB_V7tiNSU4gw2vSFQlR27CGE9ALow_fn11Nq8a6HfcG7869oo7xO8fEFqYiMTSCktE9gOMuOjeoDnP_NefZ8d_u0fMhX6_vH5c0qb1ktYq5VXQlGuAatG0F0ZRg3QHXN0s45GI2pLkUDVPEGFi0RTDSaasq50YpRNs8uD71b794mCFEONrTQ92oENwVZV0yUlPJFStJDsvUuBA9Gbr0dlP-QBMu9VtnJvVa51ypxLZPWBF0foGQAdha8DK2FsQVtPbRRamf_w38A74uH3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963852247</pqid></control><display><type>article</type><title>On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Dong-Feng ; O'Dowd, Noel P.</creator><creatorcontrib>Li, Dong-Feng ; O'Dowd, Noel P.</creatorcontrib><description>In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2011.09.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Austenitic stainless steels ; Crystal plasticity ; Deformation ; Evolution ; Finite elements ; Latent hardening ; Lattice strain ; Mathematical analysis ; Mathematical models ; Neutron diffraction ; Slip</subject><ispartof>Journal of the mechanics and physics of solids, 2011-12, Vol.59 (12), p.2421-2441</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-da968314deddb81d6f34fe2d93ddb44efd02d58be2a4be7c1838bd2d244fda323</citedby><cites>FETCH-LOGICAL-c398t-da968314deddb81d6f34fe2d93ddb44efd02d58be2a4be7c1838bd2d244fda323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2011.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Dong-Feng</creatorcontrib><creatorcontrib>O'Dowd, Noel P.</creatorcontrib><title>On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains</title><title>Journal of the mechanics and physics of solids</title><description>In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.</description><subject>Austenitic stainless steels</subject><subject>Crystal plasticity</subject><subject>Deformation</subject><subject>Evolution</subject><subject>Finite elements</subject><subject>Latent hardening</subject><subject>Lattice strain</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neutron diffraction</subject><subject>Slip</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhjOARCm8AJM3pgTfkjoSC6q4SZW6wGw58TF1SOJiO0VsPARPyJPgUmam43P8f__wZdkFwQXBpLrqim7YhoJiQgpcFxiLo2yGMaV5ievqJDsNocMYl3hBZtm0HlHcAIKd66do3YicQb2K0baANBjnB_V7tiNSU4gw2vSFQlR27CGE9ALow_fn11Nq8a6HfcG7869oo7xO8fEFqYiMTSCktE9gOMuOjeoDnP_NefZ8d_u0fMhX6_vH5c0qb1ktYq5VXQlGuAatG0F0ZRg3QHXN0s45GI2pLkUDVPEGFi0RTDSaasq50YpRNs8uD71b794mCFEONrTQ92oENwVZV0yUlPJFStJDsvUuBA9Gbr0dlP-QBMu9VtnJvVa51ypxLZPWBF0foGQAdha8DK2FsQVtPbRRamf_w38A74uH3w</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Li, Dong-Feng</creator><creator>O'Dowd, Noel P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20111201</creationdate><title>On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains</title><author>Li, Dong-Feng ; O'Dowd, Noel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-da968314deddb81d6f34fe2d93ddb44efd02d58be2a4be7c1838bd2d244fda323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Austenitic stainless steels</topic><topic>Crystal plasticity</topic><topic>Deformation</topic><topic>Evolution</topic><topic>Finite elements</topic><topic>Latent hardening</topic><topic>Lattice strain</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neutron diffraction</topic><topic>Slip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dong-Feng</creatorcontrib><creatorcontrib>O'Dowd, Noel P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dong-Feng</au><au>O'Dowd, Noel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>59</volume><issue>12</issue><spage>2421</spage><epage>2441</epage><pages>2421-2441</pages><issn>0022-5096</issn><abstract>In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2011.09.008</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2011-12, Vol.59 (12), p.2421-2441
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_963852247
source Access via ScienceDirect (Elsevier)
subjects Austenitic stainless steels
Crystal plasticity
Deformation
Evolution
Finite elements
Latent hardening
Lattice strain
Mathematical analysis
Mathematical models
Neutron diffraction
Slip
title On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20evolution%20of%20lattice%20deformation%20in%20austenitic%20stainless%20steels%E2%80%94The%20role%20of%20work%20hardening%20at%20finite%20strains&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Li,%20Dong-Feng&rft.date=2011-12-01&rft.volume=59&rft.issue=12&rft.spage=2421&rft.epage=2441&rft.pages=2421-2441&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2011.09.008&rft_dat=%3Cproquest_cross%3E963852247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963852247&rft_id=info:pmid/&rft_els_id=S002250961100175X&rfr_iscdi=true