Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites

The concept of a "bound rubber" phase extending over nanometre-scale distances from the interface of rubber-particle nanocomposites is generally accepted. However, the thickness and elastic properties of this interphase have not been confirmed by direct experimental observation. Here, we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2011-01, Vol.7 (3), p.1066-1077
Hauptverfasser: Qu, Meng, Deng, Fei, Kalkhoran, Salmon M., Gouldstone, Andrew, Robisson, Agathe, Van Vliet, Krystyn J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1077
container_issue 3
container_start_page 1066
container_title Soft matter
container_volume 7
creator Qu, Meng
Deng, Fei
Kalkhoran, Salmon M.
Gouldstone, Andrew
Robisson, Agathe
Van Vliet, Krystyn J.
description The concept of a "bound rubber" phase extending over nanometre-scale distances from the interface of rubber-particle nanocomposites is generally accepted. However, the thickness and elastic properties of this interphase have not been confirmed by direct experimental observation. Here, we demonstrate the existence of bound rubber in hydrogenated nitrile butadiene rubber (HNBR)-carbon black composites, through direct visualization and measurement of elastic properties. Both macro- and nanoscale mechanical analyses show that the bound rubber exhibits an elastic modulus distinct from that of the rubber matrix and of the particles. Direct visualization of this bound rubber via scanning probe microscopy-based approaches requires detailed consideration of potential artifacts in contact-based analysis of viscoelastic nanocomposites. We quantify the magnitude of such contributions, and find that the bound rubber content decreases with increasing temperature, and that its stiffness exceeds that of the rubber matrix by approximately one order of magnitude. Further, the measured thickness and elastic moduli of this bound rubber are consistent with that predicted by our numerical model of a matrix-interphase-particle composite. Together, these experiments and model demonstrate that the elastic properties of nanocomposite interphases of less than 20 nm thickness can be interrogated directly.
doi_str_mv 10.1039/C0SM00645A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963851441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963851441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-abed948eaf239b7d6c44c4bcb2f85024b6ef005b33858e4c273ec116c6ec7d473</originalsourceid><addsrcrecordid>eNpFkMFKxDAQhoMouK5efILcBKGaNGnaHpdFV2HVgwreSpJO2Wja1KQV9CS-gm_ok5hlFz3Nx8w__zA_QseUnFHCyvM5ub8hRPBstoMmNOc8EQUvdv-YPe2jgxCeCWEFp2KCvm5l54KWFvCbCaO05kMOxnVYdjVuRzuYzbAFvZKdiYxN29sIa1XArsHKjVHrR6XAY9MN4PuVDBAib7s_n99aehVdlZX6BXfxpnZt74IZIByivUbaAEfbOkWPlxcP86tkebe4ns-WiWY5GRKpoC55AbJJWanyWmjONVdapU2RkZQrAQ0hmWKsyArgOs0ZaEqFFqDzmudsik42vr13ryOEoWrjc2Ct7MCNoSpF3KSc06g83Si1dyF4aKrem1b694qSap1z9Z8z-wVVP3Vd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963851441</pqid></control><display><type>article</type><title>Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Qu, Meng ; Deng, Fei ; Kalkhoran, Salmon M. ; Gouldstone, Andrew ; Robisson, Agathe ; Van Vliet, Krystyn J.</creator><creatorcontrib>Qu, Meng ; Deng, Fei ; Kalkhoran, Salmon M. ; Gouldstone, Andrew ; Robisson, Agathe ; Van Vliet, Krystyn J.</creatorcontrib><description>The concept of a "bound rubber" phase extending over nanometre-scale distances from the interface of rubber-particle nanocomposites is generally accepted. However, the thickness and elastic properties of this interphase have not been confirmed by direct experimental observation. Here, we demonstrate the existence of bound rubber in hydrogenated nitrile butadiene rubber (HNBR)-carbon black composites, through direct visualization and measurement of elastic properties. Both macro- and nanoscale mechanical analyses show that the bound rubber exhibits an elastic modulus distinct from that of the rubber matrix and of the particles. Direct visualization of this bound rubber via scanning probe microscopy-based approaches requires detailed consideration of potential artifacts in contact-based analysis of viscoelastic nanocomposites. We quantify the magnitude of such contributions, and find that the bound rubber content decreases with increasing temperature, and that its stiffness exceeds that of the rubber matrix by approximately one order of magnitude. Further, the measured thickness and elastic moduli of this bound rubber are consistent with that predicted by our numerical model of a matrix-interphase-particle composite. Together, these experiments and model demonstrate that the elastic properties of nanocomposite interphases of less than 20 nm thickness can be interrogated directly.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/C0SM00645A</identifier><language>eng</language><subject>Elastic constants ; Interphase ; Mathematical models ; Nanocomposites ; Nanomaterials ; Nanostructure ; Rubber ; Visualization</subject><ispartof>Soft matter, 2011-01, Vol.7 (3), p.1066-1077</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-abed948eaf239b7d6c44c4bcb2f85024b6ef005b33858e4c273ec116c6ec7d473</citedby><cites>FETCH-LOGICAL-c370t-abed948eaf239b7d6c44c4bcb2f85024b6ef005b33858e4c273ec116c6ec7d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Qu, Meng</creatorcontrib><creatorcontrib>Deng, Fei</creatorcontrib><creatorcontrib>Kalkhoran, Salmon M.</creatorcontrib><creatorcontrib>Gouldstone, Andrew</creatorcontrib><creatorcontrib>Robisson, Agathe</creatorcontrib><creatorcontrib>Van Vliet, Krystyn J.</creatorcontrib><title>Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites</title><title>Soft matter</title><description>The concept of a "bound rubber" phase extending over nanometre-scale distances from the interface of rubber-particle nanocomposites is generally accepted. However, the thickness and elastic properties of this interphase have not been confirmed by direct experimental observation. Here, we demonstrate the existence of bound rubber in hydrogenated nitrile butadiene rubber (HNBR)-carbon black composites, through direct visualization and measurement of elastic properties. Both macro- and nanoscale mechanical analyses show that the bound rubber exhibits an elastic modulus distinct from that of the rubber matrix and of the particles. Direct visualization of this bound rubber via scanning probe microscopy-based approaches requires detailed consideration of potential artifacts in contact-based analysis of viscoelastic nanocomposites. We quantify the magnitude of such contributions, and find that the bound rubber content decreases with increasing temperature, and that its stiffness exceeds that of the rubber matrix by approximately one order of magnitude. Further, the measured thickness and elastic moduli of this bound rubber are consistent with that predicted by our numerical model of a matrix-interphase-particle composite. Together, these experiments and model demonstrate that the elastic properties of nanocomposite interphases of less than 20 nm thickness can be interrogated directly.</description><subject>Elastic constants</subject><subject>Interphase</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Rubber</subject><subject>Visualization</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAQhoMouK5efILcBKGaNGnaHpdFV2HVgwreSpJO2Wja1KQV9CS-gm_ok5hlFz3Nx8w__zA_QseUnFHCyvM5ub8hRPBstoMmNOc8EQUvdv-YPe2jgxCeCWEFp2KCvm5l54KWFvCbCaO05kMOxnVYdjVuRzuYzbAFvZKdiYxN29sIa1XArsHKjVHrR6XAY9MN4PuVDBAib7s_n99aehVdlZX6BXfxpnZt74IZIByivUbaAEfbOkWPlxcP86tkebe4ns-WiWY5GRKpoC55AbJJWanyWmjONVdapU2RkZQrAQ0hmWKsyArgOs0ZaEqFFqDzmudsik42vr13ryOEoWrjc2Ct7MCNoSpF3KSc06g83Si1dyF4aKrem1b694qSap1z9Z8z-wVVP3Vd</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Qu, Meng</creator><creator>Deng, Fei</creator><creator>Kalkhoran, Salmon M.</creator><creator>Gouldstone, Andrew</creator><creator>Robisson, Agathe</creator><creator>Van Vliet, Krystyn J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110101</creationdate><title>Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites</title><author>Qu, Meng ; Deng, Fei ; Kalkhoran, Salmon M. ; Gouldstone, Andrew ; Robisson, Agathe ; Van Vliet, Krystyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-abed948eaf239b7d6c44c4bcb2f85024b6ef005b33858e4c273ec116c6ec7d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Elastic constants</topic><topic>Interphase</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Rubber</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Meng</creatorcontrib><creatorcontrib>Deng, Fei</creatorcontrib><creatorcontrib>Kalkhoran, Salmon M.</creatorcontrib><creatorcontrib>Gouldstone, Andrew</creatorcontrib><creatorcontrib>Robisson, Agathe</creatorcontrib><creatorcontrib>Van Vliet, Krystyn J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Meng</au><au>Deng, Fei</au><au>Kalkhoran, Salmon M.</au><au>Gouldstone, Andrew</au><au>Robisson, Agathe</au><au>Van Vliet, Krystyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites</atitle><jtitle>Soft matter</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>7</volume><issue>3</issue><spage>1066</spage><epage>1077</epage><pages>1066-1077</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The concept of a "bound rubber" phase extending over nanometre-scale distances from the interface of rubber-particle nanocomposites is generally accepted. However, the thickness and elastic properties of this interphase have not been confirmed by direct experimental observation. Here, we demonstrate the existence of bound rubber in hydrogenated nitrile butadiene rubber (HNBR)-carbon black composites, through direct visualization and measurement of elastic properties. Both macro- and nanoscale mechanical analyses show that the bound rubber exhibits an elastic modulus distinct from that of the rubber matrix and of the particles. Direct visualization of this bound rubber via scanning probe microscopy-based approaches requires detailed consideration of potential artifacts in contact-based analysis of viscoelastic nanocomposites. We quantify the magnitude of such contributions, and find that the bound rubber content decreases with increasing temperature, and that its stiffness exceeds that of the rubber matrix by approximately one order of magnitude. Further, the measured thickness and elastic moduli of this bound rubber are consistent with that predicted by our numerical model of a matrix-interphase-particle composite. Together, these experiments and model demonstrate that the elastic properties of nanocomposite interphases of less than 20 nm thickness can be interrogated directly.</abstract><doi>10.1039/C0SM00645A</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2011-01, Vol.7 (3), p.1066-1077
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_963851441
source Alma/SFX Local Collection; Royal Society of Chemistry E-Journals
subjects Elastic constants
Interphase
Mathematical models
Nanocomposites
Nanomaterials
Nanostructure
Rubber
Visualization
title Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20visualization%20and%20multiscale%20mechanical%20implications%20of%20bound%20rubber%20interphases%20in%20rubber%E2%80%93carbon%20black%20nanocomposites&rft.jtitle=Soft%20matter&rft.au=Qu,%20Meng&rft.date=2011-01-01&rft.volume=7&rft.issue=3&rft.spage=1066&rft.epage=1077&rft.pages=1066-1077&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/C0SM00645A&rft_dat=%3Cproquest_cross%3E963851441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963851441&rft_id=info:pmid/&rfr_iscdi=true