Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds

We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science (New York, N.Y.) N.Y.), 2011-03, Vol.46 (5), p.647-652
Hauptverfasser: Hordienko, V. O., Protsenko, V. S., Kwon, S. C., Lee, J.-Y., Danilov, F. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 5
container_start_page 647
container_title Materials science (New York, N.Y.)
container_volume 46
creator Hordienko, V. O.
Protsenko, V. S.
Kwon, S. C.
Lee, J.-Y.
Danilov, F. I.
description We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm 2 ) for currents with densities of 30–35 A⋅dm −2 and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.
doi_str_mv 10.1007/s11003-011-9336-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_963850091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358699574</galeid><sourcerecordid>A358699574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</originalsourceid><addsrcrecordid>eNp1kctq3TAQhk1poWnaB-jO0EWbhVNdbEtahkPaGAKBXiA7oSOPXAXbOtXIkOz6Dn3DPEl0cCA9pUWLEcP3Dfo1RfGWklNKiPiINBdeEUorxXlbsWfFEW0Er6Rsrp_nO2llJRm5flm8Qrwh2WlEc1QM5yPYFEMPu4A--TCXwZX2RwyTX6bSBpP8PGDpcqPEZXQmwf2v39bErZl8DyWs_niXAMutQejLPGMTP3Rdd5L9aReWucfXxQtnRoQ3j_W4-P7p_Nvmorq8-txtzi4rW9cqVSIHcLVUnG2Z7Ynk1DLCBDfCceqYI60hOZ8AKil3fMtqqIHThjeOgALgx8X7de4uhp8LYNKTRwvjaGYIC2rVctkQomgm3_1F3oQlzvlxmgqpmBSK8CdqMCNoP7uQorH7mfqMN7JVqhF1pk7_QeXTw-RtmMH53D8QTg6EzCS4TYNZEHX39cshS1fWxoAYweld9JOJd5oSvV--Xpev89_p_fI1yw5bHczsPED8I9x_pQcR57AZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789287903</pqid></control><display><type>article</type><title>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hordienko, V. O. ; Protsenko, V. S. ; Kwon, S. C. ; Lee, J.-Y. ; Danilov, F. I.</creator><creatorcontrib>Hordienko, V. O. ; Protsenko, V. S. ; Kwon, S. C. ; Lee, J.-Y. ; Danilov, F. I.</creatorcontrib><description>We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm 2 ) for currents with densities of 30–35 A⋅dm −2 and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.</description><identifier>ISSN: 1068-820X</identifier><identifier>EISSN: 1573-885X</identifier><identifier>DOI: 10.1007/s11003-011-9336-2</identifier><identifier>CODEN: MSCIEQ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Acids ; Carbamides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Chromium salts ; Coatings ; Coatings industry ; Deposition ; Electrodeposition ; Electrolysis ; Electrolytes ; Formic acid ; Manganese ; Materials Science ; Microhardness ; Organic acids ; Solid Mechanics ; Structural Materials ; Sulfates ; Thickness ; Titanium ; Trivalent chromium ; Urea</subject><ispartof>Materials science (New York, N.Y.), 2011-03, Vol.46 (5), p.647-652</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</citedby><cites>FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11003-011-9336-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11003-011-9336-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hordienko, V. O.</creatorcontrib><creatorcontrib>Protsenko, V. S.</creatorcontrib><creatorcontrib>Kwon, S. C.</creatorcontrib><creatorcontrib>Lee, J.-Y.</creatorcontrib><creatorcontrib>Danilov, F. I.</creatorcontrib><title>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</title><title>Materials science (New York, N.Y.)</title><addtitle>Mater Sci</addtitle><description>We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm 2 ) for currents with densities of 30–35 A⋅dm −2 and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.</description><subject>Acids</subject><subject>Carbamides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Chromium salts</subject><subject>Coatings</subject><subject>Coatings industry</subject><subject>Deposition</subject><subject>Electrodeposition</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Formic acid</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Microhardness</subject><subject>Organic acids</subject><subject>Solid Mechanics</subject><subject>Structural Materials</subject><subject>Sulfates</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Trivalent chromium</subject><subject>Urea</subject><issn>1068-820X</issn><issn>1573-885X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctq3TAQhk1poWnaB-jO0EWbhVNdbEtahkPaGAKBXiA7oSOPXAXbOtXIkOz6Dn3DPEl0cCA9pUWLEcP3Dfo1RfGWklNKiPiINBdeEUorxXlbsWfFEW0Er6Rsrp_nO2llJRm5flm8Qrwh2WlEc1QM5yPYFEMPu4A--TCXwZX2RwyTX6bSBpP8PGDpcqPEZXQmwf2v39bErZl8DyWs_niXAMutQejLPGMTP3Rdd5L9aReWucfXxQtnRoQ3j_W4-P7p_Nvmorq8-txtzi4rW9cqVSIHcLVUnG2Z7Ynk1DLCBDfCceqYI60hOZ8AKil3fMtqqIHThjeOgALgx8X7de4uhp8LYNKTRwvjaGYIC2rVctkQomgm3_1F3oQlzvlxmgqpmBSK8CdqMCNoP7uQorH7mfqMN7JVqhF1pk7_QeXTw-RtmMH53D8QTg6EzCS4TYNZEHX39cshS1fWxoAYweld9JOJd5oSvV--Xpev89_p_fI1yw5bHczsPED8I9x_pQcR57AZ</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Hordienko, V. O.</creator><creator>Protsenko, V. S.</creator><creator>Kwon, S. C.</creator><creator>Lee, J.-Y.</creator><creator>Danilov, F. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110301</creationdate><title>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</title><author>Hordienko, V. O. ; Protsenko, V. S. ; Kwon, S. C. ; Lee, J.-Y. ; Danilov, F. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acids</topic><topic>Carbamides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Chromium salts</topic><topic>Coatings</topic><topic>Coatings industry</topic><topic>Deposition</topic><topic>Electrodeposition</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Formic acid</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Microhardness</topic><topic>Organic acids</topic><topic>Solid Mechanics</topic><topic>Structural Materials</topic><topic>Sulfates</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Trivalent chromium</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hordienko, V. O.</creatorcontrib><creatorcontrib>Protsenko, V. S.</creatorcontrib><creatorcontrib>Kwon, S. C.</creatorcontrib><creatorcontrib>Lee, J.-Y.</creatorcontrib><creatorcontrib>Danilov, F. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Materials science (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hordienko, V. O.</au><au>Protsenko, V. S.</au><au>Kwon, S. C.</au><au>Lee, J.-Y.</au><au>Danilov, F. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</atitle><jtitle>Materials science (New York, N.Y.)</jtitle><stitle>Mater Sci</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>46</volume><issue>5</issue><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>1068-820X</issn><eissn>1573-885X</eissn><coden>MSCIEQ</coden><abstract>We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm 2 ) for currents with densities of 30–35 A⋅dm −2 and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11003-011-9336-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-820X
ispartof Materials science (New York, N.Y.), 2011-03, Vol.46 (5), p.647-652
issn 1068-820X
1573-885X
language eng
recordid cdi_proquest_miscellaneous_963850091
source SpringerLink Journals - AutoHoldings
subjects Acids
Carbamides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Chromium salts
Coatings
Coatings industry
Deposition
Electrodeposition
Electrolysis
Electrolytes
Formic acid
Manganese
Materials Science
Microhardness
Organic acids
Solid Mechanics
Structural Materials
Sulfates
Thickness
Titanium
Trivalent chromium
Urea
title Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20chromium%20coatings%20from%20sulfate%E2%80%93carbamide%20electrolytes%20based%20on%20Cr(III)%20compounds&rft.jtitle=Materials%20science%20(New%20York,%20N.Y.)&rft.au=Hordienko,%20V.%20O.&rft.date=2011-03-01&rft.volume=46&rft.issue=5&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=1068-820X&rft.eissn=1573-885X&rft.coden=MSCIEQ&rft_id=info:doi/10.1007/s11003-011-9336-2&rft_dat=%3Cgale_proqu%3EA358699574%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789287903&rft_id=info:pmid/&rft_galeid=A358699574&rfr_iscdi=true