Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds
We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current den...
Gespeichert in:
Veröffentlicht in: | Materials science (New York, N.Y.) N.Y.), 2011-03, Vol.46 (5), p.647-652 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 5 |
container_start_page | 647 |
container_title | Materials science (New York, N.Y.) |
container_volume | 46 |
creator | Hordienko, V. O. Protsenko, V. S. Kwon, S. C. Lee, J.-Y. Danilov, F. I. |
description | We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm
2
) for currents with densities of 30–35 A⋅dm
−2
and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces. |
doi_str_mv | 10.1007/s11003-011-9336-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_963850091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358699574</galeid><sourcerecordid>A358699574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</originalsourceid><addsrcrecordid>eNp1kctq3TAQhk1poWnaB-jO0EWbhVNdbEtahkPaGAKBXiA7oSOPXAXbOtXIkOz6Dn3DPEl0cCA9pUWLEcP3Dfo1RfGWklNKiPiINBdeEUorxXlbsWfFEW0Er6Rsrp_nO2llJRm5flm8Qrwh2WlEc1QM5yPYFEMPu4A--TCXwZX2RwyTX6bSBpP8PGDpcqPEZXQmwf2v39bErZl8DyWs_niXAMutQejLPGMTP3Rdd5L9aReWucfXxQtnRoQ3j_W4-P7p_Nvmorq8-txtzi4rW9cqVSIHcLVUnG2Z7Ynk1DLCBDfCceqYI60hOZ8AKil3fMtqqIHThjeOgALgx8X7de4uhp8LYNKTRwvjaGYIC2rVctkQomgm3_1F3oQlzvlxmgqpmBSK8CdqMCNoP7uQorH7mfqMN7JVqhF1pk7_QeXTw-RtmMH53D8QTg6EzCS4TYNZEHX39cshS1fWxoAYweld9JOJd5oSvV--Xpev89_p_fI1yw5bHczsPED8I9x_pQcR57AZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789287903</pqid></control><display><type>article</type><title>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hordienko, V. O. ; Protsenko, V. S. ; Kwon, S. C. ; Lee, J.-Y. ; Danilov, F. I.</creator><creatorcontrib>Hordienko, V. O. ; Protsenko, V. S. ; Kwon, S. C. ; Lee, J.-Y. ; Danilov, F. I.</creatorcontrib><description>We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm
2
) for currents with densities of 30–35 A⋅dm
−2
and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.</description><identifier>ISSN: 1068-820X</identifier><identifier>EISSN: 1573-885X</identifier><identifier>DOI: 10.1007/s11003-011-9336-2</identifier><identifier>CODEN: MSCIEQ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Acids ; Carbamides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Chromium salts ; Coatings ; Coatings industry ; Deposition ; Electrodeposition ; Electrolysis ; Electrolytes ; Formic acid ; Manganese ; Materials Science ; Microhardness ; Organic acids ; Solid Mechanics ; Structural Materials ; Sulfates ; Thickness ; Titanium ; Trivalent chromium ; Urea</subject><ispartof>Materials science (New York, N.Y.), 2011-03, Vol.46 (5), p.647-652</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</citedby><cites>FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11003-011-9336-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11003-011-9336-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hordienko, V. O.</creatorcontrib><creatorcontrib>Protsenko, V. S.</creatorcontrib><creatorcontrib>Kwon, S. C.</creatorcontrib><creatorcontrib>Lee, J.-Y.</creatorcontrib><creatorcontrib>Danilov, F. I.</creatorcontrib><title>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</title><title>Materials science (New York, N.Y.)</title><addtitle>Mater Sci</addtitle><description>We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm
2
) for currents with densities of 30–35 A⋅dm
−2
and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.</description><subject>Acids</subject><subject>Carbamides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Chromium salts</subject><subject>Coatings</subject><subject>Coatings industry</subject><subject>Deposition</subject><subject>Electrodeposition</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Formic acid</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Microhardness</subject><subject>Organic acids</subject><subject>Solid Mechanics</subject><subject>Structural Materials</subject><subject>Sulfates</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Trivalent chromium</subject><subject>Urea</subject><issn>1068-820X</issn><issn>1573-885X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctq3TAQhk1poWnaB-jO0EWbhVNdbEtahkPaGAKBXiA7oSOPXAXbOtXIkOz6Dn3DPEl0cCA9pUWLEcP3Dfo1RfGWklNKiPiINBdeEUorxXlbsWfFEW0Er6Rsrp_nO2llJRm5flm8Qrwh2WlEc1QM5yPYFEMPu4A--TCXwZX2RwyTX6bSBpP8PGDpcqPEZXQmwf2v39bErZl8DyWs_niXAMutQejLPGMTP3Rdd5L9aReWucfXxQtnRoQ3j_W4-P7p_Nvmorq8-txtzi4rW9cqVSIHcLVUnG2Z7Ynk1DLCBDfCceqYI60hOZ8AKil3fMtqqIHThjeOgALgx8X7de4uhp8LYNKTRwvjaGYIC2rVctkQomgm3_1F3oQlzvlxmgqpmBSK8CdqMCNoP7uQorH7mfqMN7JVqhF1pk7_QeXTw-RtmMH53D8QTg6EzCS4TYNZEHX39cshS1fWxoAYweld9JOJd5oSvV--Xpev89_p_fI1yw5bHczsPED8I9x_pQcR57AZ</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Hordienko, V. O.</creator><creator>Protsenko, V. S.</creator><creator>Kwon, S. C.</creator><creator>Lee, J.-Y.</creator><creator>Danilov, F. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110301</creationdate><title>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</title><author>Hordienko, V. O. ; Protsenko, V. S. ; Kwon, S. C. ; Lee, J.-Y. ; Danilov, F. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-7011f48932b2cd0831c20273a7f31f2f06a09337e1813f3b24e4e31535f0e9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acids</topic><topic>Carbamides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Chromium salts</topic><topic>Coatings</topic><topic>Coatings industry</topic><topic>Deposition</topic><topic>Electrodeposition</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Formic acid</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Microhardness</topic><topic>Organic acids</topic><topic>Solid Mechanics</topic><topic>Structural Materials</topic><topic>Sulfates</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Trivalent chromium</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hordienko, V. O.</creatorcontrib><creatorcontrib>Protsenko, V. S.</creatorcontrib><creatorcontrib>Kwon, S. C.</creatorcontrib><creatorcontrib>Lee, J.-Y.</creatorcontrib><creatorcontrib>Danilov, F. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Materials science (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hordienko, V. O.</au><au>Protsenko, V. S.</au><au>Kwon, S. C.</au><au>Lee, J.-Y.</au><au>Danilov, F. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds</atitle><jtitle>Materials science (New York, N.Y.)</jtitle><stitle>Mater Sci</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>46</volume><issue>5</issue><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>1068-820X</issn><eissn>1573-885X</eissn><coden>MSCIEQ</coden><abstract>We propose an electrolyte based on chromium sulfate (1 mole/liter Cr(III)) and containing both formic acid and carbamide (urea). This electrolyte enables one to get Cr coatings with a thickness of several micrometers. It is shown that the current yield and deposition rate increase as the current density and pH value increase and temperature decreases. We select the optimal conditions of electrolysis under which bright high-quality chromium deposits are obtained. In this case, the deposition rate of the metal varies from 0.5 to 1.5 μm/min. It is shown that the optimal concentration of both formic acid and carbamide is equal to 0.5 mole/liter. The necessity of using certain surface-active substances to prevent the formation of pitting on the surface of the deposit is demonstrated. Moreover, it is discovered that the microhardness of Cr deposits attains its highest values (950–980kg/mm
2
) for currents with densities of 30–35 A⋅dm
−2
and decreases as the pH value and temperature increase. Electrolysis is realized by using titanium–manganese-dioxide anodes and, hence, it is not necessary to separate the cathodic and anodic spaces.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11003-011-9336-2</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-820X |
ispartof | Materials science (New York, N.Y.), 2011-03, Vol.46 (5), p.647-652 |
issn | 1068-820X 1573-885X |
language | eng |
recordid | cdi_proquest_miscellaneous_963850091 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acids Carbamides Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Chromium salts Coatings Coatings industry Deposition Electrodeposition Electrolysis Electrolytes Formic acid Manganese Materials Science Microhardness Organic acids Solid Mechanics Structural Materials Sulfates Thickness Titanium Trivalent chromium Urea |
title | Electrodeposition of chromium coatings from sulfate–carbamide electrolytes based on Cr(III) compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20chromium%20coatings%20from%20sulfate%E2%80%93carbamide%20electrolytes%20based%20on%20Cr(III)%20compounds&rft.jtitle=Materials%20science%20(New%20York,%20N.Y.)&rft.au=Hordienko,%20V.%20O.&rft.date=2011-03-01&rft.volume=46&rft.issue=5&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=1068-820X&rft.eissn=1573-885X&rft.coden=MSCIEQ&rft_id=info:doi/10.1007/s11003-011-9336-2&rft_dat=%3Cgale_proqu%3EA358699574%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789287903&rft_id=info:pmid/&rft_galeid=A358699574&rfr_iscdi=true |