FDTD Models for Complex Materials
Complex materials are of increasing interest in Finite-Difference Time-Domain modeling. For example, when the particle density becomes large, collisional fluid models of plasmas are an attractive alternative to particle in cell methods. Further, frequency dispersive meta-materials are of increasing...
Gespeichert in:
Veröffentlicht in: | The open plasma physics journal 2010-05, Vol.3 (1), p.42-47 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | The open plasma physics journal |
container_volume | 3 |
creator | Greenwood, Andrew D. |
description | Complex materials are of increasing interest in Finite-Difference Time-Domain modeling. For example, when the particle density becomes large, collisional fluid models of plasmas are an attractive alternative to particle in cell methods. Further, frequency dispersive meta-materials are of increasing interest. Thus, Finite-Difference Time-Domain (FDTD) models are derived for magnetized plasmas and for the Lorentz and Drude material models. Previous models of these types of materials make assumptions that may unnecessarily restrict the simulation time step. By considering the solution of the differential equations on the interval of a time step, these assumptions are avoided. Studies show that the resulting magnetized plasma model is numerically stable when the FDTD Courant condition and the Nyquist sampling theorem for the plasma and cyclotron frequencies are obeyed. Waves propagating in the modeled plasma exhibit the correct dispersion relations. Studies also show the Lorentz and Drude material models to be stable up to the FDTD Courant limit and to exhibit the correct dispersion relations. |
doi_str_mv | 10.2174/1876534301003010042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963849713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963849713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1212-86d0e6d162bedf421fe51c82887f96835f8b2d4d559b46398b992ec03db57b243</originalsourceid><addsrcrecordid>eNptkD1PwzAYhC0EEqXwC1jCxBTw66_YI0opILViKbMVx6-loAQHu5Xg39O0DAwsd6dHpxuOkGugdwwqcQ-6UpILToHSgwh2QmYTLSd8-iefk4uc3ylVEpiYkZvlYrMo1tFjn4sQU1HHYezxq1g3W0xd0-dLchb2hle_Pidvy8dN_VyuXp9e6odV2QIDVmrlKSoPijn0QTAIKKHVTOsqGKW5DNoxL7yUxgnFjXbGMGwp905Wjgk-J7fH3THFzx3mrR263GLfNx8Yd9kaxbUwFfB9kx-bbYo5Jwx2TN3QpG8L1E5_2H_-4D__tE9z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963849713</pqid></control><display><type>article</type><title>FDTD Models for Complex Materials</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Greenwood, Andrew D.</creator><creatorcontrib>Greenwood, Andrew D.</creatorcontrib><description>Complex materials are of increasing interest in Finite-Difference Time-Domain modeling. For example, when the particle density becomes large, collisional fluid models of plasmas are an attractive alternative to particle in cell methods. Further, frequency dispersive meta-materials are of increasing interest. Thus, Finite-Difference Time-Domain (FDTD) models are derived for magnetized plasmas and for the Lorentz and Drude material models. Previous models of these types of materials make assumptions that may unnecessarily restrict the simulation time step. By considering the solution of the differential equations on the interval of a time step, these assumptions are avoided. Studies show that the resulting magnetized plasma model is numerically stable when the FDTD Courant condition and the Nyquist sampling theorem for the plasma and cyclotron frequencies are obeyed. Waves propagating in the modeled plasma exhibit the correct dispersion relations. Studies also show the Lorentz and Drude material models to be stable up to the FDTD Courant limit and to exhibit the correct dispersion relations.</description><identifier>ISSN: 1876-5343</identifier><identifier>EISSN: 1876-5343</identifier><identifier>DOI: 10.2174/1876534301003010042</identifier><language>eng</language><subject>Density ; Differential equations ; Dispersions ; Finite difference method ; Finite difference time domain method ; Mathematical analysis ; Mathematical models ; Theorems</subject><ispartof>The open plasma physics journal, 2010-05, Vol.3 (1), p.42-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Greenwood, Andrew D.</creatorcontrib><title>FDTD Models for Complex Materials</title><title>The open plasma physics journal</title><description>Complex materials are of increasing interest in Finite-Difference Time-Domain modeling. For example, when the particle density becomes large, collisional fluid models of plasmas are an attractive alternative to particle in cell methods. Further, frequency dispersive meta-materials are of increasing interest. Thus, Finite-Difference Time-Domain (FDTD) models are derived for magnetized plasmas and for the Lorentz and Drude material models. Previous models of these types of materials make assumptions that may unnecessarily restrict the simulation time step. By considering the solution of the differential equations on the interval of a time step, these assumptions are avoided. Studies show that the resulting magnetized plasma model is numerically stable when the FDTD Courant condition and the Nyquist sampling theorem for the plasma and cyclotron frequencies are obeyed. Waves propagating in the modeled plasma exhibit the correct dispersion relations. Studies also show the Lorentz and Drude material models to be stable up to the FDTD Courant limit and to exhibit the correct dispersion relations.</description><subject>Density</subject><subject>Differential equations</subject><subject>Dispersions</subject><subject>Finite difference method</subject><subject>Finite difference time domain method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Theorems</subject><issn>1876-5343</issn><issn>1876-5343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAYhC0EEqXwC1jCxBTw66_YI0opILViKbMVx6-loAQHu5Xg39O0DAwsd6dHpxuOkGugdwwqcQ-6UpILToHSgwh2QmYTLSd8-iefk4uc3ylVEpiYkZvlYrMo1tFjn4sQU1HHYezxq1g3W0xd0-dLchb2hle_Pidvy8dN_VyuXp9e6odV2QIDVmrlKSoPijn0QTAIKKHVTOsqGKW5DNoxL7yUxgnFjXbGMGwp905Wjgk-J7fH3THFzx3mrR263GLfNx8Yd9kaxbUwFfB9kx-bbYo5Jwx2TN3QpG8L1E5_2H_-4D__tE9z</recordid><startdate>20100530</startdate><enddate>20100530</enddate><creator>Greenwood, Andrew D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100530</creationdate><title>FDTD Models for Complex Materials</title><author>Greenwood, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1212-86d0e6d162bedf421fe51c82887f96835f8b2d4d559b46398b992ec03db57b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Density</topic><topic>Differential equations</topic><topic>Dispersions</topic><topic>Finite difference method</topic><topic>Finite difference time domain method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenwood, Andrew D.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The open plasma physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenwood, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FDTD Models for Complex Materials</atitle><jtitle>The open plasma physics journal</jtitle><date>2010-05-30</date><risdate>2010</risdate><volume>3</volume><issue>1</issue><spage>42</spage><epage>47</epage><pages>42-47</pages><issn>1876-5343</issn><eissn>1876-5343</eissn><abstract>Complex materials are of increasing interest in Finite-Difference Time-Domain modeling. For example, when the particle density becomes large, collisional fluid models of plasmas are an attractive alternative to particle in cell methods. Further, frequency dispersive meta-materials are of increasing interest. Thus, Finite-Difference Time-Domain (FDTD) models are derived for magnetized plasmas and for the Lorentz and Drude material models. Previous models of these types of materials make assumptions that may unnecessarily restrict the simulation time step. By considering the solution of the differential equations on the interval of a time step, these assumptions are avoided. Studies show that the resulting magnetized plasma model is numerically stable when the FDTD Courant condition and the Nyquist sampling theorem for the plasma and cyclotron frequencies are obeyed. Waves propagating in the modeled plasma exhibit the correct dispersion relations. Studies also show the Lorentz and Drude material models to be stable up to the FDTD Courant limit and to exhibit the correct dispersion relations.</abstract><doi>10.2174/1876534301003010042</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-5343 |
ispartof | The open plasma physics journal, 2010-05, Vol.3 (1), p.42-47 |
issn | 1876-5343 1876-5343 |
language | eng |
recordid | cdi_proquest_miscellaneous_963849713 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Density Differential equations Dispersions Finite difference method Finite difference time domain method Mathematical analysis Mathematical models Theorems |
title | FDTD Models for Complex Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FDTD%20Models%20for%20Complex%20Materials&rft.jtitle=The%20open%20plasma%20physics%20journal&rft.au=Greenwood,%20Andrew%20D.&rft.date=2010-05-30&rft.volume=3&rft.issue=1&rft.spage=42&rft.epage=47&rft.pages=42-47&rft.issn=1876-5343&rft.eissn=1876-5343&rft_id=info:doi/10.2174/1876534301003010042&rft_dat=%3Cproquest_cross%3E963849713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963849713&rft_id=info:pmid/&rfr_iscdi=true |