Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers

Data on the directional changes of a full magnetization vector during cycling to cryogenic temperatures can provide important insights into the low‐temperature magnetic properties of natural and synthetic materials. These data also provide an empirical basis for the application of low‐temperature tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2011-04, Vol.12 (4), p.np-n/a
Hauptverfasser: Smirnov, Aleksey V., Tarduno, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page np
container_title Geochemistry, geophysics, geosystems : G3
container_volume 12
creator Smirnov, Aleksey V.
Tarduno, John A.
description Data on the directional changes of a full magnetization vector during cycling to cryogenic temperatures can provide important insights into the low‐temperature magnetic properties of natural and synthetic materials. These data also provide an empirical basis for the application of low‐temperature treatments in paleomagnetism, for example, the removal of viscous magnetization in magnetite‐bearing rocks. However, existing instruments only allow continuous measurement of magnetization along a single axis, hampering experimental and theoretical advances in rock magnetism and the implementation of low‐temperature techniques into regular paleomagnetic practices. Here we describe development of a novel low‐temperature insert designed in collaboration with William S. Goree Inc., which allows measurement of directional behavior of a full magnetization vector during zero‐field low‐temperature cycling. Pilot experiments on well‐controlled polycrystalline samples of pseudo‐single‐domain (PSD) and multidomain magnetite as well as on a natural sample containing PSD magnetite indicate that the orientation of a saturation isothermal remanent magnetization (SIRM) imparted at room temperature remains constant during low‐temperature cycling to 20 K. This observation lends additional support to low‐temperature cycling as a cleaning technique in paleomagnetism. The SIRM imparted in an individual crystal of magnetite showed systematic, albeit small changes upon both cooling and warming through the Verwey temperature, which may reflect switching between the easy magnetization directions. However, the switching effect may be significantly attenuated by crystallographic twinning in magnetite below the transition. Overall, our results demonstrate the potential of the directional low‐temperature magnetometry for the advancement of our understanding of the properties of natural and synthetic materials. Key Points A new device for full magnetization vector measurements at low temperatures Novel data on the magnetization vector behavior during low‐temperature cycling The results show a great potential of directional low‐temperature magnetometry
doi_str_mv 10.1029/2011GC003517
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_963849542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963849542</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5028-81905f9634fd1bc284cd9a40ff2a26ac7b4963713bb98cce3795f5ad40eaee713</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEEqVw4wEsLnAgxXbsxD6ibcn2j-AAiKPldcbFbWJvbaelPE8fFC_bVhWHcprP3_zms0aaqnpN8B7BVH6gmJB-gXHDSfek2iGc8ppi2j19oJ9XL1I6w5gwzsVOdbMPlzCG9QQ-o2CRRmO4qjNMa4g6zxGQ8wliRjZElH8CmkCnYt_xRWm_0ZM-9ZDdb51d8GhwEcxfNSfnT1GaS54JfpiLW94Xs_Z5nkp4hmghgjeABrh0pcRgzm_jwgSln15Wz6weE7y6rbvV908H3xbL-uRLf7j4eFJrjqmoBZGYW9k2zA5kZahgZpCaYWuppq023YqVZkea1UoKY6DpJLdcDwyDBij-bvV2m7uO4WKGlNXkkoFxLCuGOakyLZjkjBby3aMkaTlhrOOC_R_ljDBMOW4L-uYf9CzM0ZeVlWgbLGmDRYHebyETQ0oRrFpHN-l4rQhWmzNQD8-g4HSLX7kRrh9lVd_3B0SyzR_1dsilDL_uh3Q8V23XdFz9-NyrI7k8_rpYHqm2-QP_VMZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863092308</pqid></control><display><type>article</type><title>Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers</title><source>Wiley Online Library Open Access</source><creator>Smirnov, Aleksey V. ; Tarduno, John A.</creator><creatorcontrib>Smirnov, Aleksey V. ; Tarduno, John A.</creatorcontrib><description>Data on the directional changes of a full magnetization vector during cycling to cryogenic temperatures can provide important insights into the low‐temperature magnetic properties of natural and synthetic materials. These data also provide an empirical basis for the application of low‐temperature treatments in paleomagnetism, for example, the removal of viscous magnetization in magnetite‐bearing rocks. However, existing instruments only allow continuous measurement of magnetization along a single axis, hampering experimental and theoretical advances in rock magnetism and the implementation of low‐temperature techniques into regular paleomagnetic practices. Here we describe development of a novel low‐temperature insert designed in collaboration with William S. Goree Inc., which allows measurement of directional behavior of a full magnetization vector during zero‐field low‐temperature cycling. Pilot experiments on well‐controlled polycrystalline samples of pseudo‐single‐domain (PSD) and multidomain magnetite as well as on a natural sample containing PSD magnetite indicate that the orientation of a saturation isothermal remanent magnetization (SIRM) imparted at room temperature remains constant during low‐temperature cycling to 20 K. This observation lends additional support to low‐temperature cycling as a cleaning technique in paleomagnetism. The SIRM imparted in an individual crystal of magnetite showed systematic, albeit small changes upon both cooling and warming through the Verwey temperature, which may reflect switching between the easy magnetization directions. However, the switching effect may be significantly attenuated by crystallographic twinning in magnetite below the transition. Overall, our results demonstrate the potential of the directional low‐temperature magnetometry for the advancement of our understanding of the properties of natural and synthetic materials. Key Points A new device for full magnetization vector measurements at low temperatures Novel data on the magnetization vector behavior during low‐temperature cycling The results show a great potential of directional low‐temperature magnetometry</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2011GC003517</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Cycles ; Low temperature ; low-temperature insert ; Magnetic properties ; Magnetism ; Magnetite ; Magnetization ; magnetometry ; Mathematical analysis ; Minerals ; Paleomagnetism ; Rock ; Rocks ; Scientific apparatus &amp; instruments ; Vectors (mathematics)</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2011-04, Vol.12 (4), p.np-n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5028-81905f9634fd1bc284cd9a40ff2a26ac7b4963713bb98cce3795f5ad40eaee713</citedby><cites>FETCH-LOGICAL-a5028-81905f9634fd1bc284cd9a40ff2a26ac7b4963713bb98cce3795f5ad40eaee713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011GC003517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011GC003517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011GC003517$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Smirnov, Aleksey V.</creatorcontrib><creatorcontrib>Tarduno, John A.</creatorcontrib><title>Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>Data on the directional changes of a full magnetization vector during cycling to cryogenic temperatures can provide important insights into the low‐temperature magnetic properties of natural and synthetic materials. These data also provide an empirical basis for the application of low‐temperature treatments in paleomagnetism, for example, the removal of viscous magnetization in magnetite‐bearing rocks. However, existing instruments only allow continuous measurement of magnetization along a single axis, hampering experimental and theoretical advances in rock magnetism and the implementation of low‐temperature techniques into regular paleomagnetic practices. Here we describe development of a novel low‐temperature insert designed in collaboration with William S. Goree Inc., which allows measurement of directional behavior of a full magnetization vector during zero‐field low‐temperature cycling. Pilot experiments on well‐controlled polycrystalline samples of pseudo‐single‐domain (PSD) and multidomain magnetite as well as on a natural sample containing PSD magnetite indicate that the orientation of a saturation isothermal remanent magnetization (SIRM) imparted at room temperature remains constant during low‐temperature cycling to 20 K. This observation lends additional support to low‐temperature cycling as a cleaning technique in paleomagnetism. The SIRM imparted in an individual crystal of magnetite showed systematic, albeit small changes upon both cooling and warming through the Verwey temperature, which may reflect switching between the easy magnetization directions. However, the switching effect may be significantly attenuated by crystallographic twinning in magnetite below the transition. Overall, our results demonstrate the potential of the directional low‐temperature magnetometry for the advancement of our understanding of the properties of natural and synthetic materials. Key Points A new device for full magnetization vector measurements at low temperatures Novel data on the magnetization vector behavior during low‐temperature cycling The results show a great potential of directional low‐temperature magnetometry</description><subject>Cycles</subject><subject>Low temperature</subject><subject>low-temperature insert</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetization</subject><subject>magnetometry</subject><subject>Mathematical analysis</subject><subject>Minerals</subject><subject>Paleomagnetism</subject><subject>Rock</subject><subject>Rocks</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Vectors (mathematics)</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks9u1DAQxiMEEqVw4wEsLnAgxXbsxD6ibcn2j-AAiKPldcbFbWJvbaelPE8fFC_bVhWHcprP3_zms0aaqnpN8B7BVH6gmJB-gXHDSfek2iGc8ppi2j19oJ9XL1I6w5gwzsVOdbMPlzCG9QQ-o2CRRmO4qjNMa4g6zxGQ8wliRjZElH8CmkCnYt_xRWm_0ZM-9ZDdb51d8GhwEcxfNSfnT1GaS54JfpiLW94Xs_Z5nkp4hmghgjeABrh0pcRgzm_jwgSln15Wz6weE7y6rbvV908H3xbL-uRLf7j4eFJrjqmoBZGYW9k2zA5kZahgZpCaYWuppq023YqVZkea1UoKY6DpJLdcDwyDBij-bvV2m7uO4WKGlNXkkoFxLCuGOakyLZjkjBby3aMkaTlhrOOC_R_ljDBMOW4L-uYf9CzM0ZeVlWgbLGmDRYHebyETQ0oRrFpHN-l4rQhWmzNQD8-g4HSLX7kRrh9lVd_3B0SyzR_1dsilDL_uh3Q8V23XdFz9-NyrI7k8_rpYHqm2-QP_VMZT</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Smirnov, Aleksey V.</creator><creator>Tarduno, John A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201104</creationdate><title>Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers</title><author>Smirnov, Aleksey V. ; Tarduno, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5028-81905f9634fd1bc284cd9a40ff2a26ac7b4963713bb98cce3795f5ad40eaee713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cycles</topic><topic>Low temperature</topic><topic>low-temperature insert</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetization</topic><topic>magnetometry</topic><topic>Mathematical analysis</topic><topic>Minerals</topic><topic>Paleomagnetism</topic><topic>Rock</topic><topic>Rocks</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Aleksey V.</creatorcontrib><creatorcontrib>Tarduno, John A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smirnov, Aleksey V.</au><au>Tarduno, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2011-04</date><risdate>2011</risdate><volume>12</volume><issue>4</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Data on the directional changes of a full magnetization vector during cycling to cryogenic temperatures can provide important insights into the low‐temperature magnetic properties of natural and synthetic materials. These data also provide an empirical basis for the application of low‐temperature treatments in paleomagnetism, for example, the removal of viscous magnetization in magnetite‐bearing rocks. However, existing instruments only allow continuous measurement of magnetization along a single axis, hampering experimental and theoretical advances in rock magnetism and the implementation of low‐temperature techniques into regular paleomagnetic practices. Here we describe development of a novel low‐temperature insert designed in collaboration with William S. Goree Inc., which allows measurement of directional behavior of a full magnetization vector during zero‐field low‐temperature cycling. Pilot experiments on well‐controlled polycrystalline samples of pseudo‐single‐domain (PSD) and multidomain magnetite as well as on a natural sample containing PSD magnetite indicate that the orientation of a saturation isothermal remanent magnetization (SIRM) imparted at room temperature remains constant during low‐temperature cycling to 20 K. This observation lends additional support to low‐temperature cycling as a cleaning technique in paleomagnetism. The SIRM imparted in an individual crystal of magnetite showed systematic, albeit small changes upon both cooling and warming through the Verwey temperature, which may reflect switching between the easy magnetization directions. However, the switching effect may be significantly attenuated by crystallographic twinning in magnetite below the transition. Overall, our results demonstrate the potential of the directional low‐temperature magnetometry for the advancement of our understanding of the properties of natural and synthetic materials. Key Points A new device for full magnetization vector measurements at low temperatures Novel data on the magnetization vector behavior during low‐temperature cycling The results show a great potential of directional low‐temperature magnetometry</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011GC003517</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2011-04, Vol.12 (4), p.np-n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_miscellaneous_963849542
source Wiley Online Library Open Access
subjects Cycles
Low temperature
low-temperature insert
Magnetic properties
Magnetism
Magnetite
Magnetization
magnetometry
Mathematical analysis
Minerals
Paleomagnetism
Rock
Rocks
Scientific apparatus & instruments
Vectors (mathematics)
title Development of a low-temperature insert for the measurement of remanent magnetization direction using superconducting quantum interference device rock magnetometers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20low-temperature%20insert%20for%20the%20measurement%20of%20remanent%20magnetization%20direction%20using%20superconducting%20quantum%20interference%20device%20rock%20magnetometers&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Smirnov,%20Aleksey%20V.&rft.date=2011-04&rft.volume=12&rft.issue=4&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2011GC003517&rft_dat=%3Cproquest_24P%3E963849542%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863092308&rft_id=info:pmid/&rfr_iscdi=true