Grain-Boundary Segregation and Phase-Separation Mechanism in Yttria-Stabilized Tetragonal Zirconia Polycrystal

Microstructure development during sintering in 3 mol% Y2O3-stabilized tetragonal ZrO2 polycrystal (Y-TZP) was systematically investigated in two sintering conditions: (a) 1100-1650°C for 2 h and (b) 1300°C for 0-50 h. In the sintering condition (a), the density and grain size in Y-TZP increased with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2011-01, Vol.484, p.82-88
Hauptverfasser: Ikuhara, Yuichi, Yoshida, Hidehiro, Matsui, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microstructure development during sintering in 3 mol% Y2O3-stabilized tetragonal ZrO2 polycrystal (Y-TZP) was systematically investigated in two sintering conditions: (a) 1100-1650°C for 2 h and (b) 1300°C for 0-50 h. In the sintering condition (a), the density and grain size in Y-TZP increased with the increasing sintering temperature. Scanning transmission electron microscopy (STEM) and nanoprobe X-ray energy dispersive spectroscopy (EDS) measurements revealed that the Y3+ ion distribution was nearly homogeneous up to 1300°C, i.e., most of grains were the tetragonal phase, but cubic-phase regions with high Y3+ ion concentration were clearly formed in grain interiors adjacent to the grain boundaries at 1500°C. High-resolution transmission electron microscopy (HRTEM) and nanoprobe EDS measurements revealed that no amorphous or second phase is present along the grain-boundary faces, and Y3+ ions segregated not only along the tetragonal-tetragonal phase boundaries but also along tetragonal-cubic phase boundaries over a width below about 10 nm, respectively. These results indicate that the cubic-phase regions are formed from the grain boundaries and/or the multiple junctions in which Y3+ ions segregated. We termed this process a “grain boundary segregation-induced phase transformation (GBSIPT)” mechanism. In the sintering condition (b), the density was low and the grain-growth rate was much slow. In the specimen sintered at 1300°C for 50 h, the cubic-phase regions were clearly formed in the grain interiors adjacent to the grain boundaries. This behavior shows that the cubic-phase regions were formed without grain growth, which can be explained by the GBSIPT model.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.484.82