A survey on question answering technology from an information retrieval perspective

This article provides a comprehensive and comparative overview of question answering technology. It presents the question answering task from an information retrieval perspective and emphasises the importance of retrieval models, i.e., representations of queries and information documents, and retrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011-12, Vol.181 (24), p.5412-5434
Hauptverfasser: Kolomiyets, Oleksandr, Moens, Marie-Francine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5434
container_issue 24
container_start_page 5412
container_title Information sciences
container_volume 181
creator Kolomiyets, Oleksandr
Moens, Marie-Francine
description This article provides a comprehensive and comparative overview of question answering technology. It presents the question answering task from an information retrieval perspective and emphasises the importance of retrieval models, i.e., representations of queries and information documents, and retrieval functions which are used for estimating the relevance between a query and an answer candidate. The survey suggests a general question answering architecture that steadily increases the complexity of the representation level of questions and information objects. On the one hand, natural language queries are reduced to keyword-based searches, on the other hand, knowledge bases are queried with structured or logical queries obtained from the natural language questions, and answers are obtained through reasoning. We discuss different levels of processing yielding bag-of-words-based and more complex representations integrating part-of-speech tags, classification of the expected answer type, semantic roles, discourse analysis, translation into a SQL-like language and logical representations.
doi_str_mv 10.1016/j.ins.2011.07.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963848137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511003860</els_id><sourcerecordid>963848137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d8656bd3aaf6f3341dd8ee196a60b49ad5b1688d199892f1b764bdf521f951ab3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1xqkl7keaitM08SVN4gCco7RxRqYuKUlXtH9PtnHmZEt-Xst-CLkFmgEFdr_JjA1ZTgEyWme0rM_IDHidpyxv4JzMKM1pSvOquiRXIWwojQhjM_K-SMLOT7hPnE2-dxhGExtpww96Y9fJiN2Xdb1b7xPt3TZOEmO181t5BD2O3uAk-2RAHwbsRjPhNbnQsg9481fn5PPp8WP5kq7enl-Xi1XalQUfU8VZxVpVSKmZLooSlOKI0DDJaFs2UlUtMM4VNA1vcg1tzcpW6SoH3VQg22JO7k57B--Op4utCR32vbTodkE0rOAlh6KOJJzIzrsQPGoxeLOVfi-AioM_sRHRnzj4E7QWUU7MPJwyGF-YDHoROoO2Q2V8_FMoZ_5J_wJ7UXpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963848137</pqid></control><display><type>article</type><title>A survey on question answering technology from an information retrieval perspective</title><source>Elsevier ScienceDirect Journals</source><creator>Kolomiyets, Oleksandr ; Moens, Marie-Francine</creator><creatorcontrib>Kolomiyets, Oleksandr ; Moens, Marie-Francine</creatorcontrib><description>This article provides a comprehensive and comparative overview of question answering technology. It presents the question answering task from an information retrieval perspective and emphasises the importance of retrieval models, i.e., representations of queries and information documents, and retrieval functions which are used for estimating the relevance between a query and an answer candidate. The survey suggests a general question answering architecture that steadily increases the complexity of the representation level of questions and information objects. On the one hand, natural language queries are reduced to keyword-based searches, on the other hand, knowledge bases are queried with structured or logical queries obtained from the natural language questions, and answers are obtained through reasoning. We discuss different levels of processing yielding bag-of-words-based and more complex representations integrating part-of-speech tags, classification of the expected answer type, semantic roles, discourse analysis, translation into a SQL-like language and logical representations.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.07.047</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Information retrieval ; Knowledge bases (artificial intelligence) ; Natural language interfaces ; Queries ; Question answering ; Representations ; Retrieval ; Retrieval and ranking models ; Semantics ; Tasks ; Translations</subject><ispartof>Information sciences, 2011-12, Vol.181 (24), p.5412-5434</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d8656bd3aaf6f3341dd8ee196a60b49ad5b1688d199892f1b764bdf521f951ab3</citedby><cites>FETCH-LOGICAL-c438t-d8656bd3aaf6f3341dd8ee196a60b49ad5b1688d199892f1b764bdf521f951ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025511003860$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kolomiyets, Oleksandr</creatorcontrib><creatorcontrib>Moens, Marie-Francine</creatorcontrib><title>A survey on question answering technology from an information retrieval perspective</title><title>Information sciences</title><description>This article provides a comprehensive and comparative overview of question answering technology. It presents the question answering task from an information retrieval perspective and emphasises the importance of retrieval models, i.e., representations of queries and information documents, and retrieval functions which are used for estimating the relevance between a query and an answer candidate. The survey suggests a general question answering architecture that steadily increases the complexity of the representation level of questions and information objects. On the one hand, natural language queries are reduced to keyword-based searches, on the other hand, knowledge bases are queried with structured or logical queries obtained from the natural language questions, and answers are obtained through reasoning. We discuss different levels of processing yielding bag-of-words-based and more complex representations integrating part-of-speech tags, classification of the expected answer type, semantic roles, discourse analysis, translation into a SQL-like language and logical representations.</description><subject>Information retrieval</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Natural language interfaces</subject><subject>Queries</subject><subject>Question answering</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Retrieval and ranking models</subject><subject>Semantics</subject><subject>Tasks</subject><subject>Translations</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1xqkl7keaitM08SVN4gCco7RxRqYuKUlXtH9PtnHmZEt-Xst-CLkFmgEFdr_JjA1ZTgEyWme0rM_IDHidpyxv4JzMKM1pSvOquiRXIWwojQhjM_K-SMLOT7hPnE2-dxhGExtpww96Y9fJiN2Xdb1b7xPt3TZOEmO181t5BD2O3uAk-2RAHwbsRjPhNbnQsg9481fn5PPp8WP5kq7enl-Xi1XalQUfU8VZxVpVSKmZLooSlOKI0DDJaFs2UlUtMM4VNA1vcg1tzcpW6SoH3VQg22JO7k57B--Op4utCR32vbTodkE0rOAlh6KOJJzIzrsQPGoxeLOVfi-AioM_sRHRnzj4E7QWUU7MPJwyGF-YDHoROoO2Q2V8_FMoZ_5J_wJ7UXpY</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Kolomiyets, Oleksandr</creator><creator>Moens, Marie-Francine</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>A survey on question answering technology from an information retrieval perspective</title><author>Kolomiyets, Oleksandr ; Moens, Marie-Francine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d8656bd3aaf6f3341dd8ee196a60b49ad5b1688d199892f1b764bdf521f951ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Information retrieval</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Natural language interfaces</topic><topic>Queries</topic><topic>Question answering</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Retrieval and ranking models</topic><topic>Semantics</topic><topic>Tasks</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolomiyets, Oleksandr</creatorcontrib><creatorcontrib>Moens, Marie-Francine</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolomiyets, Oleksandr</au><au>Moens, Marie-Francine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on question answering technology from an information retrieval perspective</atitle><jtitle>Information sciences</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>181</volume><issue>24</issue><spage>5412</spage><epage>5434</epage><pages>5412-5434</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This article provides a comprehensive and comparative overview of question answering technology. It presents the question answering task from an information retrieval perspective and emphasises the importance of retrieval models, i.e., representations of queries and information documents, and retrieval functions which are used for estimating the relevance between a query and an answer candidate. The survey suggests a general question answering architecture that steadily increases the complexity of the representation level of questions and information objects. On the one hand, natural language queries are reduced to keyword-based searches, on the other hand, knowledge bases are queried with structured or logical queries obtained from the natural language questions, and answers are obtained through reasoning. We discuss different levels of processing yielding bag-of-words-based and more complex representations integrating part-of-speech tags, classification of the expected answer type, semantic roles, discourse analysis, translation into a SQL-like language and logical representations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.07.047</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2011-12, Vol.181 (24), p.5412-5434
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_963848137
source Elsevier ScienceDirect Journals
subjects Information retrieval
Knowledge bases (artificial intelligence)
Natural language interfaces
Queries
Question answering
Representations
Retrieval
Retrieval and ranking models
Semantics
Tasks
Translations
title A survey on question answering technology from an information retrieval perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20question%20answering%20technology%20from%20an%20information%20retrieval%20perspective&rft.jtitle=Information%20sciences&rft.au=Kolomiyets,%20Oleksandr&rft.date=2011-12-15&rft.volume=181&rft.issue=24&rft.spage=5412&rft.epage=5434&rft.pages=5412-5434&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.07.047&rft_dat=%3Cproquest_cross%3E963848137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963848137&rft_id=info:pmid/&rft_els_id=S0020025511003860&rfr_iscdi=true