Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys
While previous studies have reported that nanocrystalline materials exhibit poor resistance to fatigue crack growth (FCG), the electro-deposited nanocrystalline Ni–Co alloys tested in this paper show superior resistance to FCG. The high damage tolerance of our alloy is attributed to the following: a...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2011-11, Vol.59 (19), p.7340-7355 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7355 |
---|---|
container_issue | 19 |
container_start_page | 7340 |
container_title | Acta materialia |
container_volume | 59 |
creator | Sangid, Michael D. Pataky, Garrett J. Sehitoglu, Huseyin Rateick, Richard G. Niendorf, Thomas Maier, Hans J. |
description | While previous studies have reported that nanocrystalline materials exhibit poor resistance to fatigue crack growth (FCG), the electro-deposited nanocrystalline Ni–Co alloys tested in this paper show superior resistance to FCG. The high damage tolerance of our alloy is attributed to the following: alloying with Co, low internal stresses resulting in stability of the microstructure, and a combination of high strength and ductility. The high density of grain boundaries interact with the dislocations emitted from the crack tip, which impedes FCG, as predicted by the present model and measured experimentally by digital image correlation. Further, the addition of Co increases the strength of the material by refining the grain size, reducing the fraction of low angle grain boundaries, and reducing the stacking fault energy of the material, thereby increasing the prevalence of twinning. The microstructure is stabilized by minimizing the internal stress during a stress relief heat treatment following the electro-deposition process. As a result grain growth does not occur during deformation, leaving dislocation-mediated plasticity as the primary deformation mechanism. The low internal stresses and nanoscale twins preserve the ductility of the material, thereby reaching a balance between strength and ductility, which results in a superior resistance to FCG. |
doi_str_mv | 10.1016/j.actamat.2011.07.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963848021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411005441</els_id><sourcerecordid>963848021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-30692574efe31a91663d28b678f23f57c65b3abe6db29c34f10761e997f24fa43</originalsourceid><addsrcrecordid>eNqFkD1vFDEQhlcIJELIT4jkBtFkF3-tvVtFKApJpEgUQG15vePEx976MvYmuo6ekn-YXxKf7kSFRDVTPO87mqeqThltGGXq06qxLtu1zQ2njDVUN7TtXlVHrNOi5rIVr8su2r5WspVvq3cprShlXEt6VP3-tmwAQ0TibQ53CxCH1v0kdxif8j1BSCFlOzs4IwERHgFTGMIU8vaM2Hn8Z-r51591cBhTxsXlBaHUTIWLc7oPGxI9me0cHW5L8zSFGUgZcZveV2-8nRKcHOZx9ePL5feL6_r269XNxefb2kmhcy2o6nmrJXgQzPZMKTHyblC681z4VjvVDsIOoMaB905Iz6hWDPpeey69leK4-rjv3WB8WCBlsw7JwTTZGeKSTK9EJzvKWSHbPbn7JiF4s8Gwtrg1jJqde7MyB_dm595QbYr7kvtwuGCTs5PHYjCkv2EuldCMqsKd7zko7z4GQJNcgGJ7DAgumzGG_1x6AaxcohM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963848021</pqid></control><display><type>article</type><title>Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sangid, Michael D. ; Pataky, Garrett J. ; Sehitoglu, Huseyin ; Rateick, Richard G. ; Niendorf, Thomas ; Maier, Hans J.</creator><creatorcontrib>Sangid, Michael D. ; Pataky, Garrett J. ; Sehitoglu, Huseyin ; Rateick, Richard G. ; Niendorf, Thomas ; Maier, Hans J.</creatorcontrib><description>While previous studies have reported that nanocrystalline materials exhibit poor resistance to fatigue crack growth (FCG), the electro-deposited nanocrystalline Ni–Co alloys tested in this paper show superior resistance to FCG. The high damage tolerance of our alloy is attributed to the following: alloying with Co, low internal stresses resulting in stability of the microstructure, and a combination of high strength and ductility. The high density of grain boundaries interact with the dislocations emitted from the crack tip, which impedes FCG, as predicted by the present model and measured experimentally by digital image correlation. Further, the addition of Co increases the strength of the material by refining the grain size, reducing the fraction of low angle grain boundaries, and reducing the stacking fault energy of the material, thereby increasing the prevalence of twinning. The microstructure is stabilized by minimizing the internal stress during a stress relief heat treatment following the electro-deposition process. As a result grain growth does not occur during deformation, leaving dislocation-mediated plasticity as the primary deformation mechanism. The low internal stresses and nanoscale twins preserve the ductility of the material, thereby reaching a balance between strength and ductility, which results in a superior resistance to FCG.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.07.058</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloying ; Alloys ; Applied sciences ; Crack propagation ; Ductility ; Exact sciences and technology ; Fatigue ; Fatigue failure ; Fracture mechanics ; Grain boundaries ; Irreversibility ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Nanocrystalline alloys ; Nanocrystals ; Nanostructure</subject><ispartof>Acta materialia, 2011-11, Vol.59 (19), p.7340-7355</ispartof><rights>2011 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-30692574efe31a91663d28b678f23f57c65b3abe6db29c34f10761e997f24fa43</citedby><cites>FETCH-LOGICAL-c437t-30692574efe31a91663d28b678f23f57c65b3abe6db29c34f10761e997f24fa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2011.07.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24637106$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangid, Michael D.</creatorcontrib><creatorcontrib>Pataky, Garrett J.</creatorcontrib><creatorcontrib>Sehitoglu, Huseyin</creatorcontrib><creatorcontrib>Rateick, Richard G.</creatorcontrib><creatorcontrib>Niendorf, Thomas</creatorcontrib><creatorcontrib>Maier, Hans J.</creatorcontrib><title>Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys</title><title>Acta materialia</title><description>While previous studies have reported that nanocrystalline materials exhibit poor resistance to fatigue crack growth (FCG), the electro-deposited nanocrystalline Ni–Co alloys tested in this paper show superior resistance to FCG. The high damage tolerance of our alloy is attributed to the following: alloying with Co, low internal stresses resulting in stability of the microstructure, and a combination of high strength and ductility. The high density of grain boundaries interact with the dislocations emitted from the crack tip, which impedes FCG, as predicted by the present model and measured experimentally by digital image correlation. Further, the addition of Co increases the strength of the material by refining the grain size, reducing the fraction of low angle grain boundaries, and reducing the stacking fault energy of the material, thereby increasing the prevalence of twinning. The microstructure is stabilized by minimizing the internal stress during a stress relief heat treatment following the electro-deposition process. As a result grain growth does not occur during deformation, leaving dislocation-mediated plasticity as the primary deformation mechanism. The low internal stresses and nanoscale twins preserve the ductility of the material, thereby reaching a balance between strength and ductility, which results in a superior resistance to FCG.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Applied sciences</subject><subject>Crack propagation</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Irreversibility</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Nanocrystalline alloys</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vFDEQhlcIJELIT4jkBtFkF3-tvVtFKApJpEgUQG15vePEx976MvYmuo6ekn-YXxKf7kSFRDVTPO87mqeqThltGGXq06qxLtu1zQ2njDVUN7TtXlVHrNOi5rIVr8su2r5WspVvq3cprShlXEt6VP3-tmwAQ0TibQ53CxCH1v0kdxif8j1BSCFlOzs4IwERHgFTGMIU8vaM2Hn8Z-r51591cBhTxsXlBaHUTIWLc7oPGxI9me0cHW5L8zSFGUgZcZveV2-8nRKcHOZx9ePL5feL6_r269XNxefb2kmhcy2o6nmrJXgQzPZMKTHyblC681z4VjvVDsIOoMaB905Iz6hWDPpeey69leK4-rjv3WB8WCBlsw7JwTTZGeKSTK9EJzvKWSHbPbn7JiF4s8Gwtrg1jJqde7MyB_dm595QbYr7kvtwuGCTs5PHYjCkv2EuldCMqsKd7zko7z4GQJNcgGJ7DAgumzGG_1x6AaxcohM</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Sangid, Michael D.</creator><creator>Pataky, Garrett J.</creator><creator>Sehitoglu, Huseyin</creator><creator>Rateick, Richard G.</creator><creator>Niendorf, Thomas</creator><creator>Maier, Hans J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111101</creationdate><title>Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys</title><author>Sangid, Michael D. ; Pataky, Garrett J. ; Sehitoglu, Huseyin ; Rateick, Richard G. ; Niendorf, Thomas ; Maier, Hans J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-30692574efe31a91663d28b678f23f57c65b3abe6db29c34f10761e997f24fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Applied sciences</topic><topic>Crack propagation</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Irreversibility</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Nanocrystalline alloys</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangid, Michael D.</creatorcontrib><creatorcontrib>Pataky, Garrett J.</creatorcontrib><creatorcontrib>Sehitoglu, Huseyin</creatorcontrib><creatorcontrib>Rateick, Richard G.</creatorcontrib><creatorcontrib>Niendorf, Thomas</creatorcontrib><creatorcontrib>Maier, Hans J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangid, Michael D.</au><au>Pataky, Garrett J.</au><au>Sehitoglu, Huseyin</au><au>Rateick, Richard G.</au><au>Niendorf, Thomas</au><au>Maier, Hans J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys</atitle><jtitle>Acta materialia</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>59</volume><issue>19</issue><spage>7340</spage><epage>7355</epage><pages>7340-7355</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>While previous studies have reported that nanocrystalline materials exhibit poor resistance to fatigue crack growth (FCG), the electro-deposited nanocrystalline Ni–Co alloys tested in this paper show superior resistance to FCG. The high damage tolerance of our alloy is attributed to the following: alloying with Co, low internal stresses resulting in stability of the microstructure, and a combination of high strength and ductility. The high density of grain boundaries interact with the dislocations emitted from the crack tip, which impedes FCG, as predicted by the present model and measured experimentally by digital image correlation. Further, the addition of Co increases the strength of the material by refining the grain size, reducing the fraction of low angle grain boundaries, and reducing the stacking fault energy of the material, thereby increasing the prevalence of twinning. The microstructure is stabilized by minimizing the internal stress during a stress relief heat treatment following the electro-deposition process. As a result grain growth does not occur during deformation, leaving dislocation-mediated plasticity as the primary deformation mechanism. The low internal stresses and nanoscale twins preserve the ductility of the material, thereby reaching a balance between strength and ductility, which results in a superior resistance to FCG.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.07.058</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2011-11, Vol.59 (19), p.7340-7355 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_963848021 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alloying Alloys Applied sciences Crack propagation Ductility Exact sciences and technology Fatigue Fatigue failure Fracture mechanics Grain boundaries Irreversibility Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Nanocrystalline alloys Nanocrystals Nanostructure |
title | Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20fatigue%20crack%20growth%20resistance,%20irreversibility,%20and%20fatigue%20crack%20growth%E2%80%93microstructure%20relationship%20of%20nanocrystalline%20alloys&rft.jtitle=Acta%20materialia&rft.au=Sangid,%20Michael%20D.&rft.date=2011-11-01&rft.volume=59&rft.issue=19&rft.spage=7340&rft.epage=7355&rft.pages=7340-7355&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.07.058&rft_dat=%3Cproquest_cross%3E963848021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963848021&rft_id=info:pmid/&rft_els_id=S1359645411005441&rfr_iscdi=true |