Molecule oxygen-driven shaping of gold islands under thermal annealing

[Display omitted] ► We investigate the annealing of Au film in different thermal environments. ► The role played by O 2 in the morphology evolution of Au film under annealing is generally ignored in literature. ► It is experimentally found that O 2 drives the migration of Au atoms under thermal trea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2011-10, Vol.258 (1), p.377-381
Hauptverfasser: Yan, Cunji, Chen, Yongchong, Jin, Aizi, Wang, Ming, Kong, Xiangdong, Zhang, Xifeng, Ju, Yu, Han, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 1
container_start_page 377
container_title Applied surface science
container_volume 258
creator Yan, Cunji
Chen, Yongchong
Jin, Aizi
Wang, Ming
Kong, Xiangdong
Zhang, Xifeng
Ju, Yu
Han, Li
description [Display omitted] ► We investigate the annealing of Au film in different thermal environments. ► The role played by O 2 in the morphology evolution of Au film under annealing is generally ignored in literature. ► It is experimentally found that O 2 drives the migration of Au atoms under thermal treatments. ► The shapes of Au islands formed by annealing are related with the interaction between O 2 and the Au surface. Fabrication of the gold micro/nano-structure in a controlled manner has recently attracted considerable interest for its potential applications. With the help of the AFM and XRD measurements, our research on the annealing of the evaporated thin gold films under different thermal environments reveals that O 2 molecule, of which the influence has been generally ignored in the prevenient literatures, can play a very important role in the formation of gold island film. It is experimentally found that the molecule oxygen-driven migration of gold atoms can only occur at a high enough temperature. The time-dependent morphological development of the thin gold film annealing in O 2 is also observed, which is determined by the reduction of the whole interface energy. The morphological features of the Au islands, such as the flat top surfaces and the steep edges, point to the essential role of the interaction between oxygen and the specifically oriented gold surface during the structural evolution.
doi_str_mv 10.1016/j.apsusc.2011.09.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963843927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433211014176</els_id><sourcerecordid>963843927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8eb4263e4378831b8d8c5421f30951bd6066e0c1ae0791e982c9b556537ba3823</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBgxZEFOCL7nYCxKqKCAVscBsOc5J68p1gp1U9O1xlYqR6Qzn-8_lQ-iW4IxgUj5sM9WHMeiMYkIyLDLMqjM0I7xiaVHw_BzNIibSnDF6ia5C2GJMaOzO0PK9s6BHC0n3c1iDSxtv9uCSsFG9ceuka5N1Z5vEBKtcE5LRNeCTYQN-p2yinANlI3eNLlplA9yc6hx9LZ8_F6_p6uPlbfG0SjUr-ZByqHNaMshZxTkjNW-4LnJKWoZFQeqmxGUJWBMFuBIEBKda1EVRFqyqFeOUzdH9NLf33fcIYZA7EzTYeBx0Y5CiZDxnglaRzCdS-y4ED63svdkpf5AEy6M1uZWTNXm0JrGQ0VqM3Z0WqKCVbb1y2oS_LM0rzAvKI_c4cRC_3RvwMmgDTkNjPOhBNp35f9EvD3GD_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963843927</pqid></control><display><type>article</type><title>Molecule oxygen-driven shaping of gold islands under thermal annealing</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Cunji ; Chen, Yongchong ; Jin, Aizi ; Wang, Ming ; Kong, Xiangdong ; Zhang, Xifeng ; Ju, Yu ; Han, Li</creator><creatorcontrib>Yan, Cunji ; Chen, Yongchong ; Jin, Aizi ; Wang, Ming ; Kong, Xiangdong ; Zhang, Xifeng ; Ju, Yu ; Han, Li</creatorcontrib><description>[Display omitted] ► We investigate the annealing of Au film in different thermal environments. ► The role played by O 2 in the morphology evolution of Au film under annealing is generally ignored in literature. ► It is experimentally found that O 2 drives the migration of Au atoms under thermal treatments. ► The shapes of Au islands formed by annealing are related with the interaction between O 2 and the Au surface. Fabrication of the gold micro/nano-structure in a controlled manner has recently attracted considerable interest for its potential applications. With the help of the AFM and XRD measurements, our research on the annealing of the evaporated thin gold films under different thermal environments reveals that O 2 molecule, of which the influence has been generally ignored in the prevenient literatures, can play a very important role in the formation of gold island film. It is experimentally found that the molecule oxygen-driven migration of gold atoms can only occur at a high enough temperature. The time-dependent morphological development of the thin gold film annealing in O 2 is also observed, which is determined by the reduction of the whole interface energy. The morphological features of the Au islands, such as the flat top surfaces and the steep edges, point to the essential role of the interaction between oxygen and the specifically oriented gold surface during the structural evolution.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2011.09.037</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annealing ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Evolution ; Exact sciences and technology ; Gold ; Gold island structure ; Islands ; Migration ; Nanocomposites ; Nanostructure ; Oxygen ; Physics ; Thermal treatment ; Thin films ; Thin gold film</subject><ispartof>Applied surface science, 2011-10, Vol.258 (1), p.377-381</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8eb4263e4378831b8d8c5421f30951bd6066e0c1ae0791e982c9b556537ba3823</citedby><cites>FETCH-LOGICAL-c368t-8eb4263e4378831b8d8c5421f30951bd6066e0c1ae0791e982c9b556537ba3823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2011.09.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24708528$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Cunji</creatorcontrib><creatorcontrib>Chen, Yongchong</creatorcontrib><creatorcontrib>Jin, Aizi</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><creatorcontrib>Zhang, Xifeng</creatorcontrib><creatorcontrib>Ju, Yu</creatorcontrib><creatorcontrib>Han, Li</creatorcontrib><title>Molecule oxygen-driven shaping of gold islands under thermal annealing</title><title>Applied surface science</title><description>[Display omitted] ► We investigate the annealing of Au film in different thermal environments. ► The role played by O 2 in the morphology evolution of Au film under annealing is generally ignored in literature. ► It is experimentally found that O 2 drives the migration of Au atoms under thermal treatments. ► The shapes of Au islands formed by annealing are related with the interaction between O 2 and the Au surface. Fabrication of the gold micro/nano-structure in a controlled manner has recently attracted considerable interest for its potential applications. With the help of the AFM and XRD measurements, our research on the annealing of the evaporated thin gold films under different thermal environments reveals that O 2 molecule, of which the influence has been generally ignored in the prevenient literatures, can play a very important role in the formation of gold island film. It is experimentally found that the molecule oxygen-driven migration of gold atoms can only occur at a high enough temperature. The time-dependent morphological development of the thin gold film annealing in O 2 is also observed, which is determined by the reduction of the whole interface energy. The morphological features of the Au islands, such as the flat top surfaces and the steep edges, point to the essential role of the interaction between oxygen and the specifically oriented gold surface during the structural evolution.</description><subject>Annealing</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Gold island structure</subject><subject>Islands</subject><subject>Migration</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Thermal treatment</subject><subject>Thin films</subject><subject>Thin gold film</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBgxZEFOCL7nYCxKqKCAVscBsOc5J68p1gp1U9O1xlYqR6Qzn-8_lQ-iW4IxgUj5sM9WHMeiMYkIyLDLMqjM0I7xiaVHw_BzNIibSnDF6ia5C2GJMaOzO0PK9s6BHC0n3c1iDSxtv9uCSsFG9ceuka5N1Z5vEBKtcE5LRNeCTYQN-p2yinANlI3eNLlplA9yc6hx9LZ8_F6_p6uPlbfG0SjUr-ZByqHNaMshZxTkjNW-4LnJKWoZFQeqmxGUJWBMFuBIEBKda1EVRFqyqFeOUzdH9NLf33fcIYZA7EzTYeBx0Y5CiZDxnglaRzCdS-y4ED63svdkpf5AEy6M1uZWTNXm0JrGQ0VqM3Z0WqKCVbb1y2oS_LM0rzAvKI_c4cRC_3RvwMmgDTkNjPOhBNp35f9EvD3GD_Q</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Yan, Cunji</creator><creator>Chen, Yongchong</creator><creator>Jin, Aizi</creator><creator>Wang, Ming</creator><creator>Kong, Xiangdong</creator><creator>Zhang, Xifeng</creator><creator>Ju, Yu</creator><creator>Han, Li</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20111015</creationdate><title>Molecule oxygen-driven shaping of gold islands under thermal annealing</title><author>Yan, Cunji ; Chen, Yongchong ; Jin, Aizi ; Wang, Ming ; Kong, Xiangdong ; Zhang, Xifeng ; Ju, Yu ; Han, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8eb4263e4378831b8d8c5421f30951bd6066e0c1ae0791e982c9b556537ba3823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annealing</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Gold island structure</topic><topic>Islands</topic><topic>Migration</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Thermal treatment</topic><topic>Thin films</topic><topic>Thin gold film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Cunji</creatorcontrib><creatorcontrib>Chen, Yongchong</creatorcontrib><creatorcontrib>Jin, Aizi</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><creatorcontrib>Zhang, Xifeng</creatorcontrib><creatorcontrib>Ju, Yu</creatorcontrib><creatorcontrib>Han, Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Cunji</au><au>Chen, Yongchong</au><au>Jin, Aizi</au><au>Wang, Ming</au><au>Kong, Xiangdong</au><au>Zhang, Xifeng</au><au>Ju, Yu</au><au>Han, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecule oxygen-driven shaping of gold islands under thermal annealing</atitle><jtitle>Applied surface science</jtitle><date>2011-10-15</date><risdate>2011</risdate><volume>258</volume><issue>1</issue><spage>377</spage><epage>381</epage><pages>377-381</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted] ► We investigate the annealing of Au film in different thermal environments. ► The role played by O 2 in the morphology evolution of Au film under annealing is generally ignored in literature. ► It is experimentally found that O 2 drives the migration of Au atoms under thermal treatments. ► The shapes of Au islands formed by annealing are related with the interaction between O 2 and the Au surface. Fabrication of the gold micro/nano-structure in a controlled manner has recently attracted considerable interest for its potential applications. With the help of the AFM and XRD measurements, our research on the annealing of the evaporated thin gold films under different thermal environments reveals that O 2 molecule, of which the influence has been generally ignored in the prevenient literatures, can play a very important role in the formation of gold island film. It is experimentally found that the molecule oxygen-driven migration of gold atoms can only occur at a high enough temperature. The time-dependent morphological development of the thin gold film annealing in O 2 is also observed, which is determined by the reduction of the whole interface energy. The morphological features of the Au islands, such as the flat top surfaces and the steep edges, point to the essential role of the interaction between oxygen and the specifically oriented gold surface during the structural evolution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2011.09.037</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2011-10, Vol.258 (1), p.377-381
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_963843927
source Elsevier ScienceDirect Journals
subjects Annealing
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Evolution
Exact sciences and technology
Gold
Gold island structure
Islands
Migration
Nanocomposites
Nanostructure
Oxygen
Physics
Thermal treatment
Thin films
Thin gold film
title Molecule oxygen-driven shaping of gold islands under thermal annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecule%20oxygen-driven%20shaping%20of%20gold%20islands%20under%20thermal%20annealing&rft.jtitle=Applied%20surface%20science&rft.au=Yan,%20Cunji&rft.date=2011-10-15&rft.volume=258&rft.issue=1&rft.spage=377&rft.epage=381&rft.pages=377-381&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2011.09.037&rft_dat=%3Cproquest_cross%3E963843927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963843927&rft_id=info:pmid/&rft_els_id=S0169433211014176&rfr_iscdi=true