Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications
Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2011-11, Vol.44 (2), p.213-221 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 2 |
container_start_page | 213 |
container_title | Tribology letters |
container_volume | 44 |
creator | Polychronopoulou, Kyriaki Lee, Jungkyu Tsotsos, Christos Demas, Nicholaos G. Meschewski, Ryan L. Rebholz, Claus Polycarpou, Andreas A. |
description | Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure, morphology, film thickness, surface topography, and roughness. XRD pattern showed the formation of f.c.c TiN, TiCN, and TiC phases with different preferred orientations for films prepared in Ar/N
2
, Ar/N
2
+ C
2
H
2
, and Ar/C
2
H
2
gas mixtures, respectively. Nanotribological performance was investigated using multipass nanoscratch technique at variable applied normal loads (100–400 μN). The nanoscale coefficient of friction was found to be in the 0.08–0.1 range, a sufficiently low value showing the potential of these films for miniature applications, such as microelectromechanical systems. The nanowear resistance at mean contact pressures in the range of 5–8.5 GPa for each sample was evaluated in terms of the average residual wear depth and an abrasive-dominated wear mechanism was found. |
doi_str_mv | 10.1007/s11249-011-9839-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963840278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963840278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3ac0cae4937c9cef788630230c31805c24ba171182ab4350ac81aac91ea3aa933</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEqXwAewssWBl8CNpnCWUp1QeEmVtTVyndUntYCeoID4elyAhIbGaWZxzNaObJIeUnFBC8tNAKUsLTCjFheAFXm8lA5rlHLOc0u24E8axEILvJnshLAmJlsgGyeeFblwwrXEWgZ2he7Cu9aZ0tZsbBTUaL8CDarU3H_BNuQo9dSWOPrYrNF0Y9YIevWu1as2bRlODzyHoGRq7yNt5QJXz6M5YA23nNTprmjoGb6LCfrJTQR30wc8cJs9Xl9PxDZ48XN-OzyZY8VS0mIMiCnRa8FwVSle5ECMe_yGKU0EyxdISaHxTMChTnhFQggKogmrgAAXnw-S4z228e-10aOXKBKXrGqx2XZDFiIuUsFxE8ugPuXSdt_E4yZigPN5AskjRnlLeheB1JRtvVuDfJSVyU4fs65CxDrmpQ66jw3onRNbOtf9N_l_6Atw2jmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281349305</pqid></control><display><type>article</type><title>Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Polychronopoulou, Kyriaki ; Lee, Jungkyu ; Tsotsos, Christos ; Demas, Nicholaos G. ; Meschewski, Ryan L. ; Rebholz, Claus ; Polycarpou, Andreas A.</creator><creatorcontrib>Polychronopoulou, Kyriaki ; Lee, Jungkyu ; Tsotsos, Christos ; Demas, Nicholaos G. ; Meschewski, Ryan L. ; Rebholz, Claus ; Polycarpou, Andreas A.</creatorcontrib><description>Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure, morphology, film thickness, surface topography, and roughness. XRD pattern showed the formation of f.c.c TiN, TiCN, and TiC phases with different preferred orientations for films prepared in Ar/N
2
, Ar/N
2
+ C
2
H
2
, and Ar/C
2
H
2
gas mixtures, respectively. Nanotribological performance was investigated using multipass nanoscratch technique at variable applied normal loads (100–400 μN). The nanoscale coefficient of friction was found to be in the 0.08–0.1 range, a sufficiently low value showing the potential of these films for miniature applications, such as microelectromechanical systems. The nanowear resistance at mean contact pressures in the range of 5–8.5 GPa for each sample was evaluated in terms of the average residual wear depth and an abrasive-dominated wear mechanism was found.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-011-9839-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Abrasive wear ; Atomic force microscopy ; Chemistry and Materials Science ; Coefficient of friction ; Contact pressure ; Corrosion and Coatings ; Deposition ; Film thickness ; Gas mixtures ; Magnetron sputtering ; Materials Science ; Microelectromechanical systems ; Microscopy ; Miniature ; Morphology ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Original Paper ; Physical Chemistry ; Physical vapor deposition ; Protective ; Protective coatings ; Scanning electron microscopy ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; Titanium ; Titanium carbide ; Titanium carbonitride ; Tribology ; Wear mechanisms ; X-ray diffraction</subject><ispartof>Tribology letters, 2011-11, Vol.44 (2), p.213-221</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Tribology Letters is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-3ac0cae4937c9cef788630230c31805c24ba171182ab4350ac81aac91ea3aa933</citedby><cites>FETCH-LOGICAL-c348t-3ac0cae4937c9cef788630230c31805c24ba171182ab4350ac81aac91ea3aa933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-011-9839-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-011-9839-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Polychronopoulou, Kyriaki</creatorcontrib><creatorcontrib>Lee, Jungkyu</creatorcontrib><creatorcontrib>Tsotsos, Christos</creatorcontrib><creatorcontrib>Demas, Nicholaos G.</creatorcontrib><creatorcontrib>Meschewski, Ryan L.</creatorcontrib><creatorcontrib>Rebholz, Claus</creatorcontrib><creatorcontrib>Polycarpou, Andreas A.</creatorcontrib><title>Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure, morphology, film thickness, surface topography, and roughness. XRD pattern showed the formation of f.c.c TiN, TiCN, and TiC phases with different preferred orientations for films prepared in Ar/N
2
, Ar/N
2
+ C
2
H
2
, and Ar/C
2
H
2
gas mixtures, respectively. Nanotribological performance was investigated using multipass nanoscratch technique at variable applied normal loads (100–400 μN). The nanoscale coefficient of friction was found to be in the 0.08–0.1 range, a sufficiently low value showing the potential of these films for miniature applications, such as microelectromechanical systems. The nanowear resistance at mean contact pressures in the range of 5–8.5 GPa for each sample was evaluated in terms of the average residual wear depth and an abrasive-dominated wear mechanism was found.</description><subject>Abrasive wear</subject><subject>Atomic force microscopy</subject><subject>Chemistry and Materials Science</subject><subject>Coefficient of friction</subject><subject>Contact pressure</subject><subject>Corrosion and Coatings</subject><subject>Deposition</subject><subject>Film thickness</subject><subject>Gas mixtures</subject><subject>Magnetron sputtering</subject><subject>Materials Science</subject><subject>Microelectromechanical systems</subject><subject>Microscopy</subject><subject>Miniature</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Physical vapor deposition</subject><subject>Protective</subject><subject>Protective coatings</subject><subject>Scanning electron microscopy</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Titanium</subject><subject>Titanium carbide</subject><subject>Titanium carbonitride</subject><subject>Tribology</subject><subject>Wear mechanisms</subject><subject>X-ray diffraction</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctOwzAQRSMEEqXwAewssWBl8CNpnCWUp1QeEmVtTVyndUntYCeoID4elyAhIbGaWZxzNaObJIeUnFBC8tNAKUsLTCjFheAFXm8lA5rlHLOc0u24E8axEILvJnshLAmJlsgGyeeFblwwrXEWgZ2he7Cu9aZ0tZsbBTUaL8CDarU3H_BNuQo9dSWOPrYrNF0Y9YIevWu1as2bRlODzyHoGRq7yNt5QJXz6M5YA23nNTprmjoGb6LCfrJTQR30wc8cJs9Xl9PxDZ48XN-OzyZY8VS0mIMiCnRa8FwVSle5ECMe_yGKU0EyxdISaHxTMChTnhFQggKogmrgAAXnw-S4z228e-10aOXKBKXrGqx2XZDFiIuUsFxE8ugPuXSdt_E4yZigPN5AskjRnlLeheB1JRtvVuDfJSVyU4fs65CxDrmpQ66jw3onRNbOtf9N_l_6Atw2jmI</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Polychronopoulou, Kyriaki</creator><creator>Lee, Jungkyu</creator><creator>Tsotsos, Christos</creator><creator>Demas, Nicholaos G.</creator><creator>Meschewski, Ryan L.</creator><creator>Rebholz, Claus</creator><creator>Polycarpou, Andreas A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications</title><author>Polychronopoulou, Kyriaki ; Lee, Jungkyu ; Tsotsos, Christos ; Demas, Nicholaos G. ; Meschewski, Ryan L. ; Rebholz, Claus ; Polycarpou, Andreas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3ac0cae4937c9cef788630230c31805c24ba171182ab4350ac81aac91ea3aa933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abrasive wear</topic><topic>Atomic force microscopy</topic><topic>Chemistry and Materials Science</topic><topic>Coefficient of friction</topic><topic>Contact pressure</topic><topic>Corrosion and Coatings</topic><topic>Deposition</topic><topic>Film thickness</topic><topic>Gas mixtures</topic><topic>Magnetron sputtering</topic><topic>Materials Science</topic><topic>Microelectromechanical systems</topic><topic>Microscopy</topic><topic>Miniature</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Physical vapor deposition</topic><topic>Protective</topic><topic>Protective coatings</topic><topic>Scanning electron microscopy</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Titanium</topic><topic>Titanium carbide</topic><topic>Titanium carbonitride</topic><topic>Tribology</topic><topic>Wear mechanisms</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polychronopoulou, Kyriaki</creatorcontrib><creatorcontrib>Lee, Jungkyu</creatorcontrib><creatorcontrib>Tsotsos, Christos</creatorcontrib><creatorcontrib>Demas, Nicholaos G.</creatorcontrib><creatorcontrib>Meschewski, Ryan L.</creatorcontrib><creatorcontrib>Rebholz, Claus</creatorcontrib><creatorcontrib>Polycarpou, Andreas A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polychronopoulou, Kyriaki</au><au>Lee, Jungkyu</au><au>Tsotsos, Christos</au><au>Demas, Nicholaos G.</au><au>Meschewski, Ryan L.</au><au>Rebholz, Claus</au><au>Polycarpou, Andreas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>44</volume><issue>2</issue><spage>213</spage><epage>221</epage><pages>213-221</pages><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>Ti-based protective thin films with thicknesses below 100 nm, intended for miniature applications were deposited using physical vapor deposition magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy were employed for the assessment of microstructure, morphology, film thickness, surface topography, and roughness. XRD pattern showed the formation of f.c.c TiN, TiCN, and TiC phases with different preferred orientations for films prepared in Ar/N
2
, Ar/N
2
+ C
2
H
2
, and Ar/C
2
H
2
gas mixtures, respectively. Nanotribological performance was investigated using multipass nanoscratch technique at variable applied normal loads (100–400 μN). The nanoscale coefficient of friction was found to be in the 0.08–0.1 range, a sufficiently low value showing the potential of these films for miniature applications, such as microelectromechanical systems. The nanowear resistance at mean contact pressures in the range of 5–8.5 GPa for each sample was evaluated in terms of the average residual wear depth and an abrasive-dominated wear mechanism was found.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11249-011-9839-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-8883 |
ispartof | Tribology letters, 2011-11, Vol.44 (2), p.213-221 |
issn | 1023-8883 1573-2711 |
language | eng |
recordid | cdi_proquest_miscellaneous_963840278 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abrasive wear Atomic force microscopy Chemistry and Materials Science Coefficient of friction Contact pressure Corrosion and Coatings Deposition Film thickness Gas mixtures Magnetron sputtering Materials Science Microelectromechanical systems Microscopy Miniature Morphology Nanocomposites Nanomaterials Nanostructure Nanotechnology Original Paper Physical Chemistry Physical vapor deposition Protective Protective coatings Scanning electron microscopy Surfaces and Interfaces Theoretical and Applied Mechanics Thin Films Titanium Titanium carbide Titanium carbonitride Tribology Wear mechanisms X-ray diffraction |
title | Deposition and Nanotribological Characterization of Sub-100-nm Thick Protective Ti-Based Coatings for Miniature Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deposition%20and%20Nanotribological%20Characterization%20of%20Sub-100-nm%20Thick%20Protective%20Ti-Based%20Coatings%20for%20Miniature%20Applications&rft.jtitle=Tribology%20letters&rft.au=Polychronopoulou,%20Kyriaki&rft.date=2011-11-01&rft.volume=44&rft.issue=2&rft.spage=213&rft.epage=221&rft.pages=213-221&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-011-9839-x&rft_dat=%3Cproquest_cross%3E963840278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281349305&rft_id=info:pmid/&rfr_iscdi=true |