Crack growth in structural materials under the combined action of fatigue and creep (review)

We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science (New York, N.Y.) N.Y.), 2009, Vol.45 (1), p.1-17
Hauptverfasser: Andreikiv, O. E., Lesiv, R. M., Levyts’ka, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title Materials science (New York, N.Y.)
container_volume 45
creator Andreikiv, O. E.
Lesiv, R. M.
Levyts’ka, N. M.
description We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.
doi_str_mv 10.1007/s11003-009-9160-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963838947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4058188841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLuAC3UxmkySmWQpxRcIbhS6EEKauWlT51GTjMV_b8q4EMHVuYvvO1xOlp0SfEUwrq4DSUFzjGUuSYlzvJdNCK9oLgSf76cblyIXBZ4fZkchrHFyeMUn2dvMa_OOlr7fxhVyHQrRDyYOXjeo1RG8001AQ1eDR3EFyPTtwnVQI22i6zvUW2R1dMsBkO5qZDzABl14-HSwvTzODmzS4eQnp9nr3e3L7CF_er5_nN085YYRFvPCUs7AkoobWnCzYJJLTSpiGGfUYFpKuzDClrYkuqaiNrg2DIOti8JayymdZudj78b3HwOEqFoXDDSN7qAfgpIlFVRIViXy7A-57gffpecUqYQsBCmJTBQZKeP7EDxYtfGu1f5LEax2c6txbpXmVru5FU5OMTohsd0S_K_mf6VvgDyCng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789281619</pqid></control><display><type>article</type><title>Crack growth in structural materials under the combined action of fatigue and creep (review)</title><source>SpringerLink Journals</source><creator>Andreikiv, O. E. ; Lesiv, R. M. ; Levyts’ka, N. M.</creator><creatorcontrib>Andreikiv, O. E. ; Lesiv, R. M. ; Levyts’ka, N. M.</creatorcontrib><description>We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.</description><identifier>ISSN: 1068-820X</identifier><identifier>EISSN: 1573-885X</identifier><identifier>DOI: 10.1007/s11003-009-9160-0</identifier><identifier>CODEN: MSCIEQ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloying elements ; Alloys ; Boundaries ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry and Materials Science ; Crack initiation ; Crack propagation ; Creep fatigue ; Electric power generation ; Fatigue failure ; Grain boundaries ; Grain size ; Heat resistant alloys ; High temperature ; Materials fatigue ; Materials Science ; Metal fatigue ; Oxygen ; Power plants ; Solid Mechanics ; Stainless steel ; Structural Materials ; Temperature ; Titanium alloys ; Turbines</subject><ispartof>Materials science (New York, N.Y.), 2009, Vol.45 (1), p.1-17</ispartof><rights>Springer Science+Business Media, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</citedby><cites>FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11003-009-9160-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11003-009-9160-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andreikiv, O. E.</creatorcontrib><creatorcontrib>Lesiv, R. M.</creatorcontrib><creatorcontrib>Levyts’ka, N. M.</creatorcontrib><title>Crack growth in structural materials under the combined action of fatigue and creep (review)</title><title>Materials science (New York, N.Y.)</title><addtitle>Mater Sci</addtitle><description>We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Creep fatigue</subject><subject>Electric power generation</subject><subject>Fatigue failure</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Materials fatigue</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Oxygen</subject><subject>Power plants</subject><subject>Solid Mechanics</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Temperature</subject><subject>Titanium alloys</subject><subject>Turbines</subject><issn>1068-820X</issn><issn>1573-885X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLuAC3UxmkySmWQpxRcIbhS6EEKauWlT51GTjMV_b8q4EMHVuYvvO1xOlp0SfEUwrq4DSUFzjGUuSYlzvJdNCK9oLgSf76cblyIXBZ4fZkchrHFyeMUn2dvMa_OOlr7fxhVyHQrRDyYOXjeo1RG8001AQ1eDR3EFyPTtwnVQI22i6zvUW2R1dMsBkO5qZDzABl14-HSwvTzODmzS4eQnp9nr3e3L7CF_er5_nN085YYRFvPCUs7AkoobWnCzYJJLTSpiGGfUYFpKuzDClrYkuqaiNrg2DIOti8JayymdZudj78b3HwOEqFoXDDSN7qAfgpIlFVRIViXy7A-57gffpecUqYQsBCmJTBQZKeP7EDxYtfGu1f5LEax2c6txbpXmVru5FU5OMTohsd0S_K_mf6VvgDyCng</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Andreikiv, O. E.</creator><creator>Lesiv, R. M.</creator><creator>Levyts’ka, N. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2009</creationdate><title>Crack growth in structural materials under the combined action of fatigue and creep (review)</title><author>Andreikiv, O. E. ; Lesiv, R. M. ; Levyts’ka, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Creep fatigue</topic><topic>Electric power generation</topic><topic>Fatigue failure</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Materials fatigue</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Oxygen</topic><topic>Power plants</topic><topic>Solid Mechanics</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Temperature</topic><topic>Titanium alloys</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreikiv, O. E.</creatorcontrib><creatorcontrib>Lesiv, R. M.</creatorcontrib><creatorcontrib>Levyts’ka, N. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Materials science (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreikiv, O. E.</au><au>Lesiv, R. M.</au><au>Levyts’ka, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack growth in structural materials under the combined action of fatigue and creep (review)</atitle><jtitle>Materials science (New York, N.Y.)</jtitle><stitle>Mater Sci</stitle><date>2009</date><risdate>2009</risdate><volume>45</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1068-820X</issn><eissn>1573-885X</eissn><coden>MSCIEQ</coden><abstract>We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11003-009-9160-0</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-820X
ispartof Materials science (New York, N.Y.), 2009, Vol.45 (1), p.1-17
issn 1068-820X
1573-885X
language eng
recordid cdi_proquest_miscellaneous_963838947
source SpringerLink Journals
subjects Alloying elements
Alloys
Boundaries
Characterization and Evaluation of Materials
Chemical properties
Chemistry and Materials Science
Crack initiation
Crack propagation
Creep fatigue
Electric power generation
Fatigue failure
Grain boundaries
Grain size
Heat resistant alloys
High temperature
Materials fatigue
Materials Science
Metal fatigue
Oxygen
Power plants
Solid Mechanics
Stainless steel
Structural Materials
Temperature
Titanium alloys
Turbines
title Crack growth in structural materials under the combined action of fatigue and creep (review)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20growth%20in%20structural%20materials%20under%20the%20combined%20action%20of%20fatigue%20and%20creep%20(review)&rft.jtitle=Materials%20science%20(New%20York,%20N.Y.)&rft.au=Andreikiv,%20O.%20E.&rft.date=2009&rft.volume=45&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1068-820X&rft.eissn=1573-885X&rft.coden=MSCIEQ&rft_id=info:doi/10.1007/s11003-009-9160-0&rft_dat=%3Cproquest_cross%3E4058188841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789281619&rft_id=info:pmid/&rfr_iscdi=true