Crack growth in structural materials under the combined action of fatigue and creep (review)
We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue...
Gespeichert in:
Veröffentlicht in: | Materials science (New York, N.Y.) N.Y.), 2009, Vol.45 (1), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Materials science (New York, N.Y.) |
container_volume | 45 |
creator | Andreikiv, O. E. Lesiv, R. M. Levyts’ka, N. M. |
description | We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail. |
doi_str_mv | 10.1007/s11003-009-9160-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963838947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4058188841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLuAC3UxmkySmWQpxRcIbhS6EEKauWlT51GTjMV_b8q4EMHVuYvvO1xOlp0SfEUwrq4DSUFzjGUuSYlzvJdNCK9oLgSf76cblyIXBZ4fZkchrHFyeMUn2dvMa_OOlr7fxhVyHQrRDyYOXjeo1RG8001AQ1eDR3EFyPTtwnVQI22i6zvUW2R1dMsBkO5qZDzABl14-HSwvTzODmzS4eQnp9nr3e3L7CF_er5_nN085YYRFvPCUs7AkoobWnCzYJJLTSpiGGfUYFpKuzDClrYkuqaiNrg2DIOti8JayymdZudj78b3HwOEqFoXDDSN7qAfgpIlFVRIViXy7A-57gffpecUqYQsBCmJTBQZKeP7EDxYtfGu1f5LEax2c6txbpXmVru5FU5OMTohsd0S_K_mf6VvgDyCng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789281619</pqid></control><display><type>article</type><title>Crack growth in structural materials under the combined action of fatigue and creep (review)</title><source>SpringerLink Journals</source><creator>Andreikiv, O. E. ; Lesiv, R. M. ; Levyts’ka, N. M.</creator><creatorcontrib>Andreikiv, O. E. ; Lesiv, R. M. ; Levyts’ka, N. M.</creatorcontrib><description>We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.</description><identifier>ISSN: 1068-820X</identifier><identifier>EISSN: 1573-885X</identifier><identifier>DOI: 10.1007/s11003-009-9160-0</identifier><identifier>CODEN: MSCIEQ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloying elements ; Alloys ; Boundaries ; Characterization and Evaluation of Materials ; Chemical properties ; Chemistry and Materials Science ; Crack initiation ; Crack propagation ; Creep fatigue ; Electric power generation ; Fatigue failure ; Grain boundaries ; Grain size ; Heat resistant alloys ; High temperature ; Materials fatigue ; Materials Science ; Metal fatigue ; Oxygen ; Power plants ; Solid Mechanics ; Stainless steel ; Structural Materials ; Temperature ; Titanium alloys ; Turbines</subject><ispartof>Materials science (New York, N.Y.), 2009, Vol.45 (1), p.1-17</ispartof><rights>Springer Science+Business Media, Inc. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</citedby><cites>FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11003-009-9160-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11003-009-9160-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andreikiv, O. E.</creatorcontrib><creatorcontrib>Lesiv, R. M.</creatorcontrib><creatorcontrib>Levyts’ka, N. M.</creatorcontrib><title>Crack growth in structural materials under the combined action of fatigue and creep (review)</title><title>Materials science (New York, N.Y.)</title><addtitle>Mater Sci</addtitle><description>We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical properties</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Creep fatigue</subject><subject>Electric power generation</subject><subject>Fatigue failure</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Materials fatigue</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Oxygen</subject><subject>Power plants</subject><subject>Solid Mechanics</subject><subject>Stainless steel</subject><subject>Structural Materials</subject><subject>Temperature</subject><subject>Titanium alloys</subject><subject>Turbines</subject><issn>1068-820X</issn><issn>1573-885X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLuAC3UxmkySmWQpxRcIbhS6EEKauWlT51GTjMV_b8q4EMHVuYvvO1xOlp0SfEUwrq4DSUFzjGUuSYlzvJdNCK9oLgSf76cblyIXBZ4fZkchrHFyeMUn2dvMa_OOlr7fxhVyHQrRDyYOXjeo1RG8001AQ1eDR3EFyPTtwnVQI22i6zvUW2R1dMsBkO5qZDzABl14-HSwvTzODmzS4eQnp9nr3e3L7CF_er5_nN085YYRFvPCUs7AkoobWnCzYJJLTSpiGGfUYFpKuzDClrYkuqaiNrg2DIOti8JayymdZudj78b3HwOEqFoXDDSN7qAfgpIlFVRIViXy7A-57gffpecUqYQsBCmJTBQZKeP7EDxYtfGu1f5LEax2c6txbpXmVru5FU5OMTohsd0S_K_mf6VvgDyCng</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Andreikiv, O. E.</creator><creator>Lesiv, R. M.</creator><creator>Levyts’ka, N. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2009</creationdate><title>Crack growth in structural materials under the combined action of fatigue and creep (review)</title><author>Andreikiv, O. E. ; Lesiv, R. M. ; Levyts’ka, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2f354ef175c325cb4959a171c4543c0369fbc8f6f61ad38dc0dc40efd22fff533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical properties</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Creep fatigue</topic><topic>Electric power generation</topic><topic>Fatigue failure</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Materials fatigue</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Oxygen</topic><topic>Power plants</topic><topic>Solid Mechanics</topic><topic>Stainless steel</topic><topic>Structural Materials</topic><topic>Temperature</topic><topic>Titanium alloys</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreikiv, O. E.</creatorcontrib><creatorcontrib>Lesiv, R. M.</creatorcontrib><creatorcontrib>Levyts’ka, N. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Materials science (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreikiv, O. E.</au><au>Lesiv, R. M.</au><au>Levyts’ka, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack growth in structural materials under the combined action of fatigue and creep (review)</atitle><jtitle>Materials science (New York, N.Y.)</jtitle><stitle>Mater Sci</stitle><date>2009</date><risdate>2009</risdate><volume>45</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1068-820X</issn><eissn>1573-885X</eissn><coden>MSCIEQ</coden><abstract>We analyze the specific features of the behavior of metals under conditions of high-temperature creep-fatigue fracture. The main approaches to predicting the life of metal structures are considered. Furthermore, we describe the results of numerous investigations of the high-temperature creep-fatigue behavior of different alloys that are used for producing turbine elements, components of power plants, pipelines, etc. Some general properties of these processes are analyzed. For example, longer holding times and lower cycling frequencies often lead to an increase in the crack growth rate and in its intragranular propagation. As a rule, these effects are more appreciable at elevated temperatures and more pronounced in oxygen environments than in inert. The level of such effects, especially in environments with oxygen, depends substantially on the parameters of microstructure, in particular, grain sizes and shape as well as the chemical properties of their boundaries. Some of these factors are considered in more detail.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11003-009-9160-0</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-820X |
ispartof | Materials science (New York, N.Y.), 2009, Vol.45 (1), p.1-17 |
issn | 1068-820X 1573-885X |
language | eng |
recordid | cdi_proquest_miscellaneous_963838947 |
source | SpringerLink Journals |
subjects | Alloying elements Alloys Boundaries Characterization and Evaluation of Materials Chemical properties Chemistry and Materials Science Crack initiation Crack propagation Creep fatigue Electric power generation Fatigue failure Grain boundaries Grain size Heat resistant alloys High temperature Materials fatigue Materials Science Metal fatigue Oxygen Power plants Solid Mechanics Stainless steel Structural Materials Temperature Titanium alloys Turbines |
title | Crack growth in structural materials under the combined action of fatigue and creep (review) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20growth%20in%20structural%20materials%20under%20the%20combined%20action%20of%20fatigue%20and%20creep%20(review)&rft.jtitle=Materials%20science%20(New%20York,%20N.Y.)&rft.au=Andreikiv,%20O.%20E.&rft.date=2009&rft.volume=45&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1068-820X&rft.eissn=1573-885X&rft.coden=MSCIEQ&rft_id=info:doi/10.1007/s11003-009-9160-0&rft_dat=%3Cproquest_cross%3E4058188841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789281619&rft_id=info:pmid/&rfr_iscdi=true |