Degree distribution and scaling in the connecting-nearest-neighbors model

We present a detailed analysis of the connecting-nearest-neighbors model by Vázquez [Phys. Rev. E 67, 056104 (2003)]. We show that the degree distribution follows a power law, but the scaling exponent can vary with the parameter setting. Moreover, the correspondence of the growing version of the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026114-026114, Article 026114
Hauptverfasser: Rudolf, Boris, Markošová, Mária, Čajági, Martin, Tiňo, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026114
container_issue 2 Pt 2
container_start_page 026114
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 85
creator Rudolf, Boris
Markošová, Mária
Čajági, Martin
Tiňo, Peter
description We present a detailed analysis of the connecting-nearest-neighbors model by Vázquez [Phys. Rev. E 67, 056104 (2003)]. We show that the degree distribution follows a power law, but the scaling exponent can vary with the parameter setting. Moreover, the correspondence of the growing version of the connecting-nearest-neighbors model to the particular random walk model and recursive search model is established.
doi_str_mv 10.1103/PhysRevE.85.026114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963831471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963831471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b52dda95515a18291539a6202c94506312b9d121ba43d7c026be14a7238dec7f3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EoqXwAhyQb5xS_J_kiEqBSpVACM6WY29bo8QpdoLUtydVW067Ws2MZj-EbimZUkr4w_tmlz7gdz4t5JQwRak4Q2MqJckYz9X5fudlxnMpR-gqpW9COOOFuEQjxoTirFBjtHiCdQTAzqcu-qrvfBuwCQ4na2of1tgH3G0A2zYEsN1wyQKYCKkbpl9vqjYm3LQO6mt0sTJ1gpvjnKCv5_nn7DVbvr0sZo_LzHKhuqySzDlTSkmloQUr9x2NYoTZUkiiOGVV6SijlRHc5Xb4qwIqTD40d2DzFZ-g-0PuNrY__VBENz5ZqGsToO2TLhUvOBU5HZTsoLSxTSnCSm-jb0zcaUr0nqA-EdSF1AeCg-nuGN9XDbh_ywkZ_wPG922e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963831471</pqid></control><display><type>article</type><title>Degree distribution and scaling in the connecting-nearest-neighbors model</title><source>American Physical Society Journals</source><creator>Rudolf, Boris ; Markošová, Mária ; Čajági, Martin ; Tiňo, Peter</creator><creatorcontrib>Rudolf, Boris ; Markošová, Mária ; Čajági, Martin ; Tiňo, Peter</creatorcontrib><description>We present a detailed analysis of the connecting-nearest-neighbors model by Vázquez [Phys. Rev. E 67, 056104 (2003)]. We show that the degree distribution follows a power law, but the scaling exponent can vary with the parameter setting. Moreover, the correspondence of the growing version of the connecting-nearest-neighbors model to the particular random walk model and recursive search model is established.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.85.026114</identifier><identifier>PMID: 22463286</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026114-026114, Article 026114</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b52dda95515a18291539a6202c94506312b9d121ba43d7c026be14a7238dec7f3</citedby><cites>FETCH-LOGICAL-c346t-b52dda95515a18291539a6202c94506312b9d121ba43d7c026be14a7238dec7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2867,2868,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22463286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rudolf, Boris</creatorcontrib><creatorcontrib>Markošová, Mária</creatorcontrib><creatorcontrib>Čajági, Martin</creatorcontrib><creatorcontrib>Tiňo, Peter</creatorcontrib><title>Degree distribution and scaling in the connecting-nearest-neighbors model</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We present a detailed analysis of the connecting-nearest-neighbors model by Vázquez [Phys. Rev. E 67, 056104 (2003)]. We show that the degree distribution follows a power law, but the scaling exponent can vary with the parameter setting. Moreover, the correspondence of the growing version of the connecting-nearest-neighbors model to the particular random walk model and recursive search model is established.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EoqXwAhyQb5xS_J_kiEqBSpVACM6WY29bo8QpdoLUtydVW067Ws2MZj-EbimZUkr4w_tmlz7gdz4t5JQwRak4Q2MqJckYz9X5fudlxnMpR-gqpW9COOOFuEQjxoTirFBjtHiCdQTAzqcu-qrvfBuwCQ4na2of1tgH3G0A2zYEsN1wyQKYCKkbpl9vqjYm3LQO6mt0sTJ1gpvjnKCv5_nn7DVbvr0sZo_LzHKhuqySzDlTSkmloQUr9x2NYoTZUkiiOGVV6SijlRHc5Xb4qwIqTD40d2DzFZ-g-0PuNrY__VBENz5ZqGsToO2TLhUvOBU5HZTsoLSxTSnCSm-jb0zcaUr0nqA-EdSF1AeCg-nuGN9XDbh_ywkZ_wPG922e</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Rudolf, Boris</creator><creator>Markošová, Mária</creator><creator>Čajági, Martin</creator><creator>Tiňo, Peter</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Degree distribution and scaling in the connecting-nearest-neighbors model</title><author>Rudolf, Boris ; Markošová, Mária ; Čajági, Martin ; Tiňo, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b52dda95515a18291539a6202c94506312b9d121ba43d7c026be14a7238dec7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudolf, Boris</creatorcontrib><creatorcontrib>Markošová, Mária</creatorcontrib><creatorcontrib>Čajági, Martin</creatorcontrib><creatorcontrib>Tiňo, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudolf, Boris</au><au>Markošová, Mária</au><au>Čajági, Martin</au><au>Tiňo, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degree distribution and scaling in the connecting-nearest-neighbors model</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-02</date><risdate>2012</risdate><volume>85</volume><issue>2 Pt 2</issue><spage>026114</spage><epage>026114</epage><pages>026114-026114</pages><artnum>026114</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We present a detailed analysis of the connecting-nearest-neighbors model by Vázquez [Phys. Rev. E 67, 056104 (2003)]. We show that the degree distribution follows a power law, but the scaling exponent can vary with the parameter setting. Moreover, the correspondence of the growing version of the connecting-nearest-neighbors model to the particular random walk model and recursive search model is established.</abstract><cop>United States</cop><pmid>22463286</pmid><doi>10.1103/PhysRevE.85.026114</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026114-026114, Article 026114
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_963831471
source American Physical Society Journals
title Degree distribution and scaling in the connecting-nearest-neighbors model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degree%20distribution%20and%20scaling%20in%20the%20connecting-nearest-neighbors%20model&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Rudolf,%20Boris&rft.date=2012-02&rft.volume=85&rft.issue=2%20Pt%202&rft.spage=026114&rft.epage=026114&rft.pages=026114-026114&rft.artnum=026114&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.85.026114&rft_dat=%3Cproquest_cross%3E963831471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963831471&rft_id=info:pmid/22463286&rfr_iscdi=true