Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions

By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way (‘bio-Pd’). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd cataly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2012-05, Vol.46 (8), p.2718-2726
Hauptverfasser: De Corte, Simon, Sabbe, Tom, Hennebel, Tom, Vanhaecke, Lynn, De Gusseme, Bart, Verstraete, Willy, Boon, Nico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2726
container_issue 8
container_start_page 2718
container_title Water research (Oxford)
container_volume 46
creator De Corte, Simon
Sabbe, Tom
Hennebel, Tom
Vanhaecke, Lynn
De Gusseme, Bart
Verstraete, Willy
Boon, Nico
description By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way (‘bio-Pd’). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst. This study shows that the activity of bio-Pd can be improved by doping with Au(0) (‘bio-Pd/Au’). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model pharmaceutical compound diclofenac from an aqueous medium in batch experiments at neutral pH and with H2 as the hydrogen donor (first order decay constant of 0.078 ± 0.009 h−1). Dehalogenation was for both catalysts the only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity (first order decay value of 0.52 ± 0.02 h−1). The removal of 6.40 μg L−1 diclofenac from a wastewater treatment plant effluent using bio-Pd was not possible even after prolonged reaction time. However, by using the most active bio-Pd/Au catalyst, 43.8 ± 0.5% of the initially present diclofenac could be removed after 24 h. This study shows that doping of bio-Pd nanoparticles with Au(0) can be a promising approach for the reductive treatment of wastewaters containing halogenated contaminants. [Display omitted] ► Biogenic nano-Pd catalysts were doped with Au(0). ► This enabled or improved the dehalogenation of pharmaceutical wastewater pollutants. ► The removal of pollutants was demonstrated successfully at environmental conditions.
doi_str_mv 10.1016/j.watres.2012.02.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963830740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004313541200139X</els_id><sourcerecordid>963830740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-d262556a3288dc6172f0849d45a03e7d49558a571a47b100284495ffcaed65c73</originalsourceid><addsrcrecordid>eNp9kV2LEzEUhoMobl39B6K5Ea9a8z2ZG2FZP2FBQfc6nCZn2pRpUpPpLvvvTZmqd8KBQPK85yRPCHnJ2Yozbt7tVvcwFawrwbhYsVbSPCILbrt-KZSyj8mCMSWXXGp1QZ7VumOMCSH7p-RCCMWMsGZBth_yIaYNzQNdx7zBFD39HqiHCcaHOlV6H6ctvTpSTLAesdKAfjvmEhNMMadTLkQ_5qGdewpT4-5iyWmPqXWgPqcQT2B9Tp4MMFZ8cV4vye2njz-vvyxvvn3-en11s_SK62kZhBFaG5DC2uAN78TArOqD0sAkdkH1WlvQHQfVrXl7kFVtaxg8YDDad_KSvJ37Hkr-dcQ6uX2sHscREuZjdb2RVrJOsUaqmfQl11pwcIcS91AeHGfupNjt3KzYnRQ71kqaFnt1HnBc7zH8Df1x2oA3ZwCqh3EokHys_zjdaS2sbNzrmRsgO9iUxtz-aJN0-yfOZS8a8X4msAm7i1hc9RGTxxAL-smFHP9_19-8yqVP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963830740</pqid></control><display><type>article</type><title>Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>De Corte, Simon ; Sabbe, Tom ; Hennebel, Tom ; Vanhaecke, Lynn ; De Gusseme, Bart ; Verstraete, Willy ; Boon, Nico</creator><creatorcontrib>De Corte, Simon ; Sabbe, Tom ; Hennebel, Tom ; Vanhaecke, Lynn ; De Gusseme, Bart ; Verstraete, Willy ; Boon, Nico</creatorcontrib><description>By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way (‘bio-Pd’). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst. This study shows that the activity of bio-Pd can be improved by doping with Au(0) (‘bio-Pd/Au’). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model pharmaceutical compound diclofenac from an aqueous medium in batch experiments at neutral pH and with H2 as the hydrogen donor (first order decay constant of 0.078 ± 0.009 h−1). Dehalogenation was for both catalysts the only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity (first order decay value of 0.52 ± 0.02 h−1). The removal of 6.40 μg L−1 diclofenac from a wastewater treatment plant effluent using bio-Pd was not possible even after prolonged reaction time. However, by using the most active bio-Pd/Au catalyst, 43.8 ± 0.5% of the initially present diclofenac could be removed after 24 h. This study shows that doping of bio-Pd nanoparticles with Au(0) can be a promising approach for the reductive treatment of wastewaters containing halogenated contaminants. [Display omitted] ► Biogenic nano-Pd catalysts were doped with Au(0). ► This enabled or improved the dehalogenation of pharmaceutical wastewater pollutants. ► The removal of pollutants was demonstrated successfully at environmental conditions.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2012.02.036</identifier><identifier>PMID: 22406286</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; bacteria ; Bimetallic catalysts ; Biodegradation, Environmental ; Biogenic metals ; Carbamazepine - isolation &amp; purification ; Catalysis ; catalysts ; catalytic activity ; Chromatography, Liquid ; dechlorination ; Dehalogenation ; Diatrizoate - isolation &amp; purification ; Diclofenac ; Diclofenac - chemistry ; Diclofenac - isolation &amp; purification ; environmental factors ; Exact sciences and technology ; gold ; Gold - metabolism ; Halogenation ; Hospitals ; hydrogen ; Kinetics ; Mass Spectrometry ; Medical Waste - analysis ; nanoparticles ; Palladium - metabolism ; Pollution ; Shewanella - metabolism ; Time Factors ; Waste Disposal, Fluid ; wastewater ; wastewater treatment ; Water Purification ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2012-05, Vol.46 (8), p.2718-2726</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-d262556a3288dc6172f0849d45a03e7d49558a571a47b100284495ffcaed65c73</citedby><cites>FETCH-LOGICAL-c415t-d262556a3288dc6172f0849d45a03e7d49558a571a47b100284495ffcaed65c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2012.02.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25755283$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22406286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Corte, Simon</creatorcontrib><creatorcontrib>Sabbe, Tom</creatorcontrib><creatorcontrib>Hennebel, Tom</creatorcontrib><creatorcontrib>Vanhaecke, Lynn</creatorcontrib><creatorcontrib>De Gusseme, Bart</creatorcontrib><creatorcontrib>Verstraete, Willy</creatorcontrib><creatorcontrib>Boon, Nico</creatorcontrib><title>Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way (‘bio-Pd’). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst. This study shows that the activity of bio-Pd can be improved by doping with Au(0) (‘bio-Pd/Au’). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model pharmaceutical compound diclofenac from an aqueous medium in batch experiments at neutral pH and with H2 as the hydrogen donor (first order decay constant of 0.078 ± 0.009 h−1). Dehalogenation was for both catalysts the only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity (first order decay value of 0.52 ± 0.02 h−1). The removal of 6.40 μg L−1 diclofenac from a wastewater treatment plant effluent using bio-Pd was not possible even after prolonged reaction time. However, by using the most active bio-Pd/Au catalyst, 43.8 ± 0.5% of the initially present diclofenac could be removed after 24 h. This study shows that doping of bio-Pd nanoparticles with Au(0) can be a promising approach for the reductive treatment of wastewaters containing halogenated contaminants. [Display omitted] ► Biogenic nano-Pd catalysts were doped with Au(0). ► This enabled or improved the dehalogenation of pharmaceutical wastewater pollutants. ► The removal of pollutants was demonstrated successfully at environmental conditions.</description><subject>Applied sciences</subject><subject>bacteria</subject><subject>Bimetallic catalysts</subject><subject>Biodegradation, Environmental</subject><subject>Biogenic metals</subject><subject>Carbamazepine - isolation &amp; purification</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>Chromatography, Liquid</subject><subject>dechlorination</subject><subject>Dehalogenation</subject><subject>Diatrizoate - isolation &amp; purification</subject><subject>Diclofenac</subject><subject>Diclofenac - chemistry</subject><subject>Diclofenac - isolation &amp; purification</subject><subject>environmental factors</subject><subject>Exact sciences and technology</subject><subject>gold</subject><subject>Gold - metabolism</subject><subject>Halogenation</subject><subject>Hospitals</subject><subject>hydrogen</subject><subject>Kinetics</subject><subject>Mass Spectrometry</subject><subject>Medical Waste - analysis</subject><subject>nanoparticles</subject><subject>Palladium - metabolism</subject><subject>Pollution</subject><subject>Shewanella - metabolism</subject><subject>Time Factors</subject><subject>Waste Disposal, Fluid</subject><subject>wastewater</subject><subject>wastewater treatment</subject><subject>Water Purification</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2LEzEUhoMobl39B6K5Ea9a8z2ZG2FZP2FBQfc6nCZn2pRpUpPpLvvvTZmqd8KBQPK85yRPCHnJ2Yozbt7tVvcwFawrwbhYsVbSPCILbrt-KZSyj8mCMSWXXGp1QZ7VumOMCSH7p-RCCMWMsGZBth_yIaYNzQNdx7zBFD39HqiHCcaHOlV6H6ctvTpSTLAesdKAfjvmEhNMMadTLkQ_5qGdewpT4-5iyWmPqXWgPqcQT2B9Tp4MMFZ8cV4vye2njz-vvyxvvn3-en11s_SK62kZhBFaG5DC2uAN78TArOqD0sAkdkH1WlvQHQfVrXl7kFVtaxg8YDDad_KSvJ37Hkr-dcQ6uX2sHscREuZjdb2RVrJOsUaqmfQl11pwcIcS91AeHGfupNjt3KzYnRQ71kqaFnt1HnBc7zH8Df1x2oA3ZwCqh3EokHys_zjdaS2sbNzrmRsgO9iUxtz-aJN0-yfOZS8a8X4msAm7i1hc9RGTxxAL-smFHP9_19-8yqVP</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>De Corte, Simon</creator><creator>Sabbe, Tom</creator><creator>Hennebel, Tom</creator><creator>Vanhaecke, Lynn</creator><creator>De Gusseme, Bart</creator><creator>Verstraete, Willy</creator><creator>Boon, Nico</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120515</creationdate><title>Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions</title><author>De Corte, Simon ; Sabbe, Tom ; Hennebel, Tom ; Vanhaecke, Lynn ; De Gusseme, Bart ; Verstraete, Willy ; Boon, Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-d262556a3288dc6172f0849d45a03e7d49558a571a47b100284495ffcaed65c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>bacteria</topic><topic>Bimetallic catalysts</topic><topic>Biodegradation, Environmental</topic><topic>Biogenic metals</topic><topic>Carbamazepine - isolation &amp; purification</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>Chromatography, Liquid</topic><topic>dechlorination</topic><topic>Dehalogenation</topic><topic>Diatrizoate - isolation &amp; purification</topic><topic>Diclofenac</topic><topic>Diclofenac - chemistry</topic><topic>Diclofenac - isolation &amp; purification</topic><topic>environmental factors</topic><topic>Exact sciences and technology</topic><topic>gold</topic><topic>Gold - metabolism</topic><topic>Halogenation</topic><topic>Hospitals</topic><topic>hydrogen</topic><topic>Kinetics</topic><topic>Mass Spectrometry</topic><topic>Medical Waste - analysis</topic><topic>nanoparticles</topic><topic>Palladium - metabolism</topic><topic>Pollution</topic><topic>Shewanella - metabolism</topic><topic>Time Factors</topic><topic>Waste Disposal, Fluid</topic><topic>wastewater</topic><topic>wastewater treatment</topic><topic>Water Purification</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Corte, Simon</creatorcontrib><creatorcontrib>Sabbe, Tom</creatorcontrib><creatorcontrib>Hennebel, Tom</creatorcontrib><creatorcontrib>Vanhaecke, Lynn</creatorcontrib><creatorcontrib>De Gusseme, Bart</creatorcontrib><creatorcontrib>Verstraete, Willy</creatorcontrib><creatorcontrib>Boon, Nico</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Corte, Simon</au><au>Sabbe, Tom</au><au>Hennebel, Tom</au><au>Vanhaecke, Lynn</au><au>De Gusseme, Bart</au><au>Verstraete, Willy</au><au>Boon, Nico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>46</volume><issue>8</issue><spage>2718</spage><epage>2726</epage><pages>2718-2726</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way (‘bio-Pd’). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst. This study shows that the activity of bio-Pd can be improved by doping with Au(0) (‘bio-Pd/Au’). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model pharmaceutical compound diclofenac from an aqueous medium in batch experiments at neutral pH and with H2 as the hydrogen donor (first order decay constant of 0.078 ± 0.009 h−1). Dehalogenation was for both catalysts the only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity (first order decay value of 0.52 ± 0.02 h−1). The removal of 6.40 μg L−1 diclofenac from a wastewater treatment plant effluent using bio-Pd was not possible even after prolonged reaction time. However, by using the most active bio-Pd/Au catalyst, 43.8 ± 0.5% of the initially present diclofenac could be removed after 24 h. This study shows that doping of bio-Pd nanoparticles with Au(0) can be a promising approach for the reductive treatment of wastewaters containing halogenated contaminants. [Display omitted] ► Biogenic nano-Pd catalysts were doped with Au(0). ► This enabled or improved the dehalogenation of pharmaceutical wastewater pollutants. ► The removal of pollutants was demonstrated successfully at environmental conditions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22406286</pmid><doi>10.1016/j.watres.2012.02.036</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2012-05, Vol.46 (8), p.2718-2726
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_963830740
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Applied sciences
bacteria
Bimetallic catalysts
Biodegradation, Environmental
Biogenic metals
Carbamazepine - isolation & purification
Catalysis
catalysts
catalytic activity
Chromatography, Liquid
dechlorination
Dehalogenation
Diatrizoate - isolation & purification
Diclofenac
Diclofenac - chemistry
Diclofenac - isolation & purification
environmental factors
Exact sciences and technology
gold
Gold - metabolism
Halogenation
Hospitals
hydrogen
Kinetics
Mass Spectrometry
Medical Waste - analysis
nanoparticles
Palladium - metabolism
Pollution
Shewanella - metabolism
Time Factors
Waste Disposal, Fluid
wastewater
wastewater treatment
Water Purification
Water treatment and pollution
title Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20of%20biogenic%20Pd%20catalysts%20with%20Au%20enables%20dechlorination%20of%20diclofenac%20at%20environmental%20conditions&rft.jtitle=Water%20research%20(Oxford)&rft.au=De%20Corte,%20Simon&rft.date=2012-05-15&rft.volume=46&rft.issue=8&rft.spage=2718&rft.epage=2726&rft.pages=2718-2726&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2012.02.036&rft_dat=%3Cproquest_cross%3E963830740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963830740&rft_id=info:pmid/22406286&rft_els_id=S004313541200139X&rfr_iscdi=true