Chemical Synthesis of Homogeneous Human Glycosyl-interferon-β That Exhibits Potent Antitumor Activity in Vivo
Chemical synthesis of homogeneous human glycoproteins exhibiting bioactivity in vivo has been a challenging task. In an effort to overcome this long-standing problem, we selected interferon-β and examined its synthesis. The 166 residue polypeptide chain of interferon-β was prepared by covalent conde...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-03, Vol.134 (12), p.5428-5431 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical synthesis of homogeneous human glycoproteins exhibiting bioactivity in vivo has been a challenging task. In an effort to overcome this long-standing problem, we selected interferon-β and examined its synthesis. The 166 residue polypeptide chain of interferon-β was prepared by covalent condensation of two synthetic peptide segments and a glycosylated synthetic peptide bearing a complex-type glycan of biological origin. The peptides were covalently condensed by native chemical ligation. Selective desulfurization followed by deprotection of the two Cys(Acm) residues gave the target full-length polypeptide chain of interferon-β bearing either a complex-type sialyl biantennary oligosaccharide or its asialo form. Subsequent folding with concomitant formation of the native disulfide bond afforded correctly folded homogeneous glycosyl-interferon-β. The chemically synthesized sialyl interferon-β exhibited potent antitumor activity in vivo. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja2109079 |