A simple prediction score for kidney disease in the Korean population

Aim:  Screening algorithms for chronic kidney disease have been developed and validated in American populations. Given the worldwide burden of kidney disease, developing algorithms for populations outside the USA is needed. Methods:  Using simple, non‐invasive questions, we developed a prediction mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephrology (Carlton, Vic.) Vic.), 2012-03, Vol.17 (3), p.278-284
Hauptverfasser: KWON, KEUN-SANG, BANG, HEEJUNG, BOMBACK, ANDREW S, KOH, DAI-HA, YUM, JUNG-HO, LEE, JU-HYUNG, LEE, SIK, PARK, SUNG K, YOO, KEUN-YOUNG, PARK, SUE K, CHANG, SOUNG-HOON, LIM, HYUN-SUL, CHOI, JOONG MYUNG, KSHIRSAGAR, ABHIJIT V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 3
container_start_page 278
container_title Nephrology (Carlton, Vic.)
container_volume 17
creator KWON, KEUN-SANG
BANG, HEEJUNG
BOMBACK, ANDREW S
KOH, DAI-HA
YUM, JUNG-HO
LEE, JU-HYUNG
LEE, SIK
PARK, SUNG K
YOO, KEUN-YOUNG
PARK, SUE K
CHANG, SOUNG-HOON
LIM, HYUN-SUL
CHOI, JOONG MYUNG
KSHIRSAGAR, ABHIJIT V
description Aim:  Screening algorithms for chronic kidney disease have been developed and validated in American populations. Given the worldwide burden of kidney disease, developing algorithms for populations outside the USA is needed. Methods:  Using simple, non‐invasive questions, we developed a prediction model for chronic kidney disease from national population samples in Korea. The Korean National Health and Nutrition Examination Survey (n = 6565) was used for model development while validation was performed in two independent population samples, internal (n = 2921) and external datasets (n = 8166). Chronic kidney disease was defined as glomerular filtration rate 
doi_str_mv 10.1111/j.1440-1797.2011.01552.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963491737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963491737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4062-f80f9ed5406a8889cb45b3527c3bb6da565b5d6b004c999f4629f0e69ea3363</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0Eorx-AXnHKsGP2IkXLBAt5aWCAAmJjeUkE-GSJsFuRfv3OLR0jTcea-6ZsQ5CmJKYhnM-jWmSkIimKo0ZoTQmVAgWL3fQwbaxG2rOSCS4yAbo0PspITRlku6jAWM0pYqzAzS6xN7Ouhpw56C0xdy2DfZF6wBXrcOftmxghUvrwXjAtsHzD8D3oW0a3LXdojY9cYz2KlN7ONncR-jlevR6dRM9PI5vry4foiIhkkVVRioFpQgPk2WZKvJE5FywtOB5LksjpMhFKXNCkkIpVSWSqYqAVGA4l_wIna2ndq79WoCf65n1BdS1aaBdeK0kTxRNeRqS2TpZuNZ7B5XunJ0Zt9KU6N6gnupelO5F6d6g_jWolwE93SxZ5DMot-CfshC4WAe-bQ2rfw_Wk9FTXwU-WvPWz2G55Y371DL8Xei3yVgPh3cpnzy_6yH_AeDcjXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963491737</pqid></control><display><type>article</type><title>A simple prediction score for kidney disease in the Korean population</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>KWON, KEUN-SANG ; BANG, HEEJUNG ; BOMBACK, ANDREW S ; KOH, DAI-HA ; YUM, JUNG-HO ; LEE, JU-HYUNG ; LEE, SIK ; PARK, SUNG K ; YOO, KEUN-YOUNG ; PARK, SUE K ; CHANG, SOUNG-HOON ; LIM, HYUN-SUL ; CHOI, JOONG MYUNG ; KSHIRSAGAR, ABHIJIT V</creator><creatorcontrib>KWON, KEUN-SANG ; BANG, HEEJUNG ; BOMBACK, ANDREW S ; KOH, DAI-HA ; YUM, JUNG-HO ; LEE, JU-HYUNG ; LEE, SIK ; PARK, SUNG K ; YOO, KEUN-YOUNG ; PARK, SUE K ; CHANG, SOUNG-HOON ; LIM, HYUN-SUL ; CHOI, JOONG MYUNG ; KSHIRSAGAR, ABHIJIT V</creatorcontrib><description>Aim:  Screening algorithms for chronic kidney disease have been developed and validated in American populations. Given the worldwide burden of kidney disease, developing algorithms for populations outside the USA is needed. Methods:  Using simple, non‐invasive questions, we developed a prediction model for chronic kidney disease from national population samples in Korea. The Korean National Health and Nutrition Examination Survey (n = 6565) was used for model development while validation was performed in two independent population samples, internal (n = 2921) and external datasets (n = 8166). Chronic kidney disease was defined as glomerular filtration rate &lt; 60 mL/min per 1.73 m2. Results:  Seven factors – age, female gender, anaemia, hypertension, diabetes mellitus, cardiovascular disease and proteinuria – were significantly associated with prevalent chronic kidney disease. Integer scores were assigned to variables based on the magnitude of associations: 2 for age 50–59 years, 3 for age 60–69 years and 4 for age 70 years or older, and 1 for female gender, anaemia, hypertension, diabetes, proteinuria and cardiovascular disease. Based on the Youden index, a value of 4 or greater defined a high risk population with sensitivity 89%, specificity 71%, and positive predictive value 19%, and negative predictive value 99%. The area under the curve was 0.83 for the development set, and 0.87 and 0.78 in the two validation datasets. Conclusion:  This prediction algorithm, weighted towards common non‐invasive variables, had good performance characteristics in an Asian population, and provides new evidence of the similarity of the algorithms for Western and Eastern populations. Algorithms that predict the presence of CKD in specific populations facilitate patient screening particularly in primary care. These investigators have developed and validated an algorithm for predicting CKD in the Korean population.</description><identifier>ISSN: 1320-5358</identifier><identifier>EISSN: 1440-1797</identifier><identifier>DOI: 10.1111/j.1440-1797.2011.01552.x</identifier><identifier>PMID: 22171932</identifier><language>eng</language><publisher>Melbourne, Australia: Blackwell Publishing Asia</publisher><subject>Aged ; Algorithms ; Asian ; Chronic Disease ; chronic kidney disease ; epidemiology ; Female ; Humans ; Kidney Diseases - diagnosis ; Kidney Diseases - etiology ; Korea ; Logistic Models ; Male ; Middle Aged ; public health ; Risk Factors ; screening</subject><ispartof>Nephrology (Carlton, Vic.), 2012-03, Vol.17 (3), p.278-284</ispartof><rights>2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology</rights><rights>2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4062-f80f9ed5406a8889cb45b3527c3bb6da565b5d6b004c999f4629f0e69ea3363</citedby><cites>FETCH-LOGICAL-c4062-f80f9ed5406a8889cb45b3527c3bb6da565b5d6b004c999f4629f0e69ea3363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1440-1797.2011.01552.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1440-1797.2011.01552.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22171932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KWON, KEUN-SANG</creatorcontrib><creatorcontrib>BANG, HEEJUNG</creatorcontrib><creatorcontrib>BOMBACK, ANDREW S</creatorcontrib><creatorcontrib>KOH, DAI-HA</creatorcontrib><creatorcontrib>YUM, JUNG-HO</creatorcontrib><creatorcontrib>LEE, JU-HYUNG</creatorcontrib><creatorcontrib>LEE, SIK</creatorcontrib><creatorcontrib>PARK, SUNG K</creatorcontrib><creatorcontrib>YOO, KEUN-YOUNG</creatorcontrib><creatorcontrib>PARK, SUE K</creatorcontrib><creatorcontrib>CHANG, SOUNG-HOON</creatorcontrib><creatorcontrib>LIM, HYUN-SUL</creatorcontrib><creatorcontrib>CHOI, JOONG MYUNG</creatorcontrib><creatorcontrib>KSHIRSAGAR, ABHIJIT V</creatorcontrib><title>A simple prediction score for kidney disease in the Korean population</title><title>Nephrology (Carlton, Vic.)</title><addtitle>Nephrology (Carlton)</addtitle><description>Aim:  Screening algorithms for chronic kidney disease have been developed and validated in American populations. Given the worldwide burden of kidney disease, developing algorithms for populations outside the USA is needed. Methods:  Using simple, non‐invasive questions, we developed a prediction model for chronic kidney disease from national population samples in Korea. The Korean National Health and Nutrition Examination Survey (n = 6565) was used for model development while validation was performed in two independent population samples, internal (n = 2921) and external datasets (n = 8166). Chronic kidney disease was defined as glomerular filtration rate &lt; 60 mL/min per 1.73 m2. Results:  Seven factors – age, female gender, anaemia, hypertension, diabetes mellitus, cardiovascular disease and proteinuria – were significantly associated with prevalent chronic kidney disease. Integer scores were assigned to variables based on the magnitude of associations: 2 for age 50–59 years, 3 for age 60–69 years and 4 for age 70 years or older, and 1 for female gender, anaemia, hypertension, diabetes, proteinuria and cardiovascular disease. Based on the Youden index, a value of 4 or greater defined a high risk population with sensitivity 89%, specificity 71%, and positive predictive value 19%, and negative predictive value 99%. The area under the curve was 0.83 for the development set, and 0.87 and 0.78 in the two validation datasets. Conclusion:  This prediction algorithm, weighted towards common non‐invasive variables, had good performance characteristics in an Asian population, and provides new evidence of the similarity of the algorithms for Western and Eastern populations. Algorithms that predict the presence of CKD in specific populations facilitate patient screening particularly in primary care. These investigators have developed and validated an algorithm for predicting CKD in the Korean population.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Asian</subject><subject>Chronic Disease</subject><subject>chronic kidney disease</subject><subject>epidemiology</subject><subject>Female</subject><subject>Humans</subject><subject>Kidney Diseases - diagnosis</subject><subject>Kidney Diseases - etiology</subject><subject>Korea</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>public health</subject><subject>Risk Factors</subject><subject>screening</subject><issn>1320-5358</issn><issn>1440-1797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0Eorx-AXnHKsGP2IkXLBAt5aWCAAmJjeUkE-GSJsFuRfv3OLR0jTcea-6ZsQ5CmJKYhnM-jWmSkIimKo0ZoTQmVAgWL3fQwbaxG2rOSCS4yAbo0PspITRlku6jAWM0pYqzAzS6xN7Ouhpw56C0xdy2DfZF6wBXrcOftmxghUvrwXjAtsHzD8D3oW0a3LXdojY9cYz2KlN7ONncR-jlevR6dRM9PI5vry4foiIhkkVVRioFpQgPk2WZKvJE5FywtOB5LksjpMhFKXNCkkIpVSWSqYqAVGA4l_wIna2ndq79WoCf65n1BdS1aaBdeK0kTxRNeRqS2TpZuNZ7B5XunJ0Zt9KU6N6gnupelO5F6d6g_jWolwE93SxZ5DMot-CfshC4WAe-bQ2rfw_Wk9FTXwU-WvPWz2G55Y371DL8Xei3yVgPh3cpnzy_6yH_AeDcjXo</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>KWON, KEUN-SANG</creator><creator>BANG, HEEJUNG</creator><creator>BOMBACK, ANDREW S</creator><creator>KOH, DAI-HA</creator><creator>YUM, JUNG-HO</creator><creator>LEE, JU-HYUNG</creator><creator>LEE, SIK</creator><creator>PARK, SUNG K</creator><creator>YOO, KEUN-YOUNG</creator><creator>PARK, SUE K</creator><creator>CHANG, SOUNG-HOON</creator><creator>LIM, HYUN-SUL</creator><creator>CHOI, JOONG MYUNG</creator><creator>KSHIRSAGAR, ABHIJIT V</creator><general>Blackwell Publishing Asia</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>A simple prediction score for kidney disease in the Korean population</title><author>KWON, KEUN-SANG ; BANG, HEEJUNG ; BOMBACK, ANDREW S ; KOH, DAI-HA ; YUM, JUNG-HO ; LEE, JU-HYUNG ; LEE, SIK ; PARK, SUNG K ; YOO, KEUN-YOUNG ; PARK, SUE K ; CHANG, SOUNG-HOON ; LIM, HYUN-SUL ; CHOI, JOONG MYUNG ; KSHIRSAGAR, ABHIJIT V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4062-f80f9ed5406a8889cb45b3527c3bb6da565b5d6b004c999f4629f0e69ea3363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Asian</topic><topic>Chronic Disease</topic><topic>chronic kidney disease</topic><topic>epidemiology</topic><topic>Female</topic><topic>Humans</topic><topic>Kidney Diseases - diagnosis</topic><topic>Kidney Diseases - etiology</topic><topic>Korea</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>public health</topic><topic>Risk Factors</topic><topic>screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KWON, KEUN-SANG</creatorcontrib><creatorcontrib>BANG, HEEJUNG</creatorcontrib><creatorcontrib>BOMBACK, ANDREW S</creatorcontrib><creatorcontrib>KOH, DAI-HA</creatorcontrib><creatorcontrib>YUM, JUNG-HO</creatorcontrib><creatorcontrib>LEE, JU-HYUNG</creatorcontrib><creatorcontrib>LEE, SIK</creatorcontrib><creatorcontrib>PARK, SUNG K</creatorcontrib><creatorcontrib>YOO, KEUN-YOUNG</creatorcontrib><creatorcontrib>PARK, SUE K</creatorcontrib><creatorcontrib>CHANG, SOUNG-HOON</creatorcontrib><creatorcontrib>LIM, HYUN-SUL</creatorcontrib><creatorcontrib>CHOI, JOONG MYUNG</creatorcontrib><creatorcontrib>KSHIRSAGAR, ABHIJIT V</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nephrology (Carlton, Vic.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KWON, KEUN-SANG</au><au>BANG, HEEJUNG</au><au>BOMBACK, ANDREW S</au><au>KOH, DAI-HA</au><au>YUM, JUNG-HO</au><au>LEE, JU-HYUNG</au><au>LEE, SIK</au><au>PARK, SUNG K</au><au>YOO, KEUN-YOUNG</au><au>PARK, SUE K</au><au>CHANG, SOUNG-HOON</au><au>LIM, HYUN-SUL</au><au>CHOI, JOONG MYUNG</au><au>KSHIRSAGAR, ABHIJIT V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple prediction score for kidney disease in the Korean population</atitle><jtitle>Nephrology (Carlton, Vic.)</jtitle><addtitle>Nephrology (Carlton)</addtitle><date>2012-03</date><risdate>2012</risdate><volume>17</volume><issue>3</issue><spage>278</spage><epage>284</epage><pages>278-284</pages><issn>1320-5358</issn><eissn>1440-1797</eissn><abstract>Aim:  Screening algorithms for chronic kidney disease have been developed and validated in American populations. Given the worldwide burden of kidney disease, developing algorithms for populations outside the USA is needed. Methods:  Using simple, non‐invasive questions, we developed a prediction model for chronic kidney disease from national population samples in Korea. The Korean National Health and Nutrition Examination Survey (n = 6565) was used for model development while validation was performed in two independent population samples, internal (n = 2921) and external datasets (n = 8166). Chronic kidney disease was defined as glomerular filtration rate &lt; 60 mL/min per 1.73 m2. Results:  Seven factors – age, female gender, anaemia, hypertension, diabetes mellitus, cardiovascular disease and proteinuria – were significantly associated with prevalent chronic kidney disease. Integer scores were assigned to variables based on the magnitude of associations: 2 for age 50–59 years, 3 for age 60–69 years and 4 for age 70 years or older, and 1 for female gender, anaemia, hypertension, diabetes, proteinuria and cardiovascular disease. Based on the Youden index, a value of 4 or greater defined a high risk population with sensitivity 89%, specificity 71%, and positive predictive value 19%, and negative predictive value 99%. The area under the curve was 0.83 for the development set, and 0.87 and 0.78 in the two validation datasets. Conclusion:  This prediction algorithm, weighted towards common non‐invasive variables, had good performance characteristics in an Asian population, and provides new evidence of the similarity of the algorithms for Western and Eastern populations. Algorithms that predict the presence of CKD in specific populations facilitate patient screening particularly in primary care. These investigators have developed and validated an algorithm for predicting CKD in the Korean population.</abstract><cop>Melbourne, Australia</cop><pub>Blackwell Publishing Asia</pub><pmid>22171932</pmid><doi>10.1111/j.1440-1797.2011.01552.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1320-5358
ispartof Nephrology (Carlton, Vic.), 2012-03, Vol.17 (3), p.278-284
issn 1320-5358
1440-1797
language eng
recordid cdi_proquest_miscellaneous_963491737
source MEDLINE; Access via Wiley Online Library
subjects Aged
Algorithms
Asian
Chronic Disease
chronic kidney disease
epidemiology
Female
Humans
Kidney Diseases - diagnosis
Kidney Diseases - etiology
Korea
Logistic Models
Male
Middle Aged
public health
Risk Factors
screening
title A simple prediction score for kidney disease in the Korean population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20prediction%20score%20for%20kidney%20disease%20in%20the%20Korean%20population&rft.jtitle=Nephrology%20(Carlton,%20Vic.)&rft.au=KWON,%20KEUN-SANG&rft.date=2012-03&rft.volume=17&rft.issue=3&rft.spage=278&rft.epage=284&rft.pages=278-284&rft.issn=1320-5358&rft.eissn=1440-1797&rft_id=info:doi/10.1111/j.1440-1797.2011.01552.x&rft_dat=%3Cproquest_cross%3E963491737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963491737&rft_id=info:pmid/22171932&rfr_iscdi=true