Simulating self-organized molecular patterns using interaction-site models

Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2012-03, Vol.35 (3), p.1-8, Article 25
Hauptverfasser: Balbás Gambra, M., Rohr, C., Gruber, K., Hermann, B. A., Franosch, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 3
container_start_page 1
container_title The European physical journal. E, Soft matter and biological physics
container_volume 35
creator Balbás Gambra, M.
Rohr, C.
Gruber, K.
Hermann, B. A.
Franosch, T.
description Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model . The geometry of the building blocks, the symmetry of the underlying substrate, and the strength and range of interactions encode the self-assembly process. By means of Monte Carlo simulations, we have predicted an ample variety of ordering motifs which nicely reproduce the experimental results. Here, we explore in detail the phase behavior of the system in terms of the temperature and the lattice constant of the underlying substrate.
doi_str_mv 10.1140/epje/i2012-12025-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963488502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963488502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-fab50422923ecddba48e2b9e0da0192a08a885128830813f8b6189b331de28973</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwBxhQFsRk6o-4dUaE-FQlBkBis5zkpXLlOMFOpMKvx2lL2Zhs6517n3UQOqfkmtKUTKFdwdQwQhmmjDCB1wdoTFnGsMzEx-H-ntIROglhRQiJMX6MRoylYk4FH6PnV1P3VnfGLZMAtsKNX2pnvqFM6sZCEWc-aXXXgXch6cPAGRdfuuhM43AwHUSyBBtO0VGlbYCz3TlB7_d3b7ePePHy8HR7s8AFJ7MOVzoXJGXxaxyKssx1KoHlGZBSE5oxTaSWUlAmJSeS8krmMyqznHNaApPZnE_Q1ba39c1nD6FTtQkFWKsdNH1Q2YynsYGwSLItWfgmBA-Var2ptf9SlKhBoRoUqo1CtVGo1jF0savv8xrKfeTXWQQud4AOhbaV164w4Y8TkhGRDhzfciGO3BK8WjW9d1HNf-t_AGFIjGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963488502</pqid></control><display><type>article</type><title>Simulating self-organized molecular patterns using interaction-site models</title><source>SpringerLink Journals</source><creator>Balbás Gambra, M. ; Rohr, C. ; Gruber, K. ; Hermann, B. A. ; Franosch, T.</creator><creatorcontrib>Balbás Gambra, M. ; Rohr, C. ; Gruber, K. ; Hermann, B. A. ; Franosch, T.</creatorcontrib><description>Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model . The geometry of the building blocks, the symmetry of the underlying substrate, and the strength and range of interactions encode the self-assembly process. By means of Monte Carlo simulations, we have predicted an ample variety of ordering motifs which nicely reproduce the experimental results. Here, we explore in detail the phase behavior of the system in terms of the temperature and the lattice constant of the underlying substrate.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2012-12025-x</identifier><identifier>PMID: 22457153</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemistry ; Complex Fluids and Microfluidics ; Complex Systems ; Exact sciences and technology ; General and physical chemistry ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Surface physical chemistry ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2012-03, Vol.35 (3), p.1-8, Article 25</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-fab50422923ecddba48e2b9e0da0192a08a885128830813f8b6189b331de28973</citedby><cites>FETCH-LOGICAL-c306t-fab50422923ecddba48e2b9e0da0192a08a885128830813f8b6189b331de28973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2012-12025-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2012-12025-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25820543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22457153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balbás Gambra, M.</creatorcontrib><creatorcontrib>Rohr, C.</creatorcontrib><creatorcontrib>Gruber, K.</creatorcontrib><creatorcontrib>Hermann, B. A.</creatorcontrib><creatorcontrib>Franosch, T.</creatorcontrib><title>Simulating self-organized molecular patterns using interaction-site models</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model . The geometry of the building blocks, the symmetry of the underlying substrate, and the strength and range of interactions encode the self-assembly process. By means of Monte Carlo simulations, we have predicted an ample variety of ordering motifs which nicely reproduce the experimental results. Here, we explore in detail the phase behavior of the system in terms of the temperature and the lattice constant of the underlying substrate.</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surface physical chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EoqXwBxhQFsRk6o-4dUaE-FQlBkBis5zkpXLlOMFOpMKvx2lL2Zhs6517n3UQOqfkmtKUTKFdwdQwQhmmjDCB1wdoTFnGsMzEx-H-ntIROglhRQiJMX6MRoylYk4FH6PnV1P3VnfGLZMAtsKNX2pnvqFM6sZCEWc-aXXXgXch6cPAGRdfuuhM43AwHUSyBBtO0VGlbYCz3TlB7_d3b7ePePHy8HR7s8AFJ7MOVzoXJGXxaxyKssx1KoHlGZBSE5oxTaSWUlAmJSeS8krmMyqznHNaApPZnE_Q1ba39c1nD6FTtQkFWKsdNH1Q2YynsYGwSLItWfgmBA-Var2ptf9SlKhBoRoUqo1CtVGo1jF0savv8xrKfeTXWQQud4AOhbaV164w4Y8TkhGRDhzfciGO3BK8WjW9d1HNf-t_AGFIjGE</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Balbás Gambra, M.</creator><creator>Rohr, C.</creator><creator>Gruber, K.</creator><creator>Hermann, B. A.</creator><creator>Franosch, T.</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120301</creationdate><title>Simulating self-organized molecular patterns using interaction-site models</title><author>Balbás Gambra, M. ; Rohr, C. ; Gruber, K. ; Hermann, B. A. ; Franosch, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-fab50422923ecddba48e2b9e0da0192a08a885128830813f8b6189b331de28973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surface physical chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balbás Gambra, M.</creatorcontrib><creatorcontrib>Rohr, C.</creatorcontrib><creatorcontrib>Gruber, K.</creatorcontrib><creatorcontrib>Hermann, B. A.</creatorcontrib><creatorcontrib>Franosch, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balbás Gambra, M.</au><au>Rohr, C.</au><au>Gruber, K.</au><au>Hermann, B. A.</au><au>Franosch, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating self-organized molecular patterns using interaction-site models</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>35</volume><issue>3</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>25</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model . The geometry of the building blocks, the symmetry of the underlying substrate, and the strength and range of interactions encode the self-assembly process. By means of Monte Carlo simulations, we have predicted an ample variety of ordering motifs which nicely reproduce the experimental results. Here, we explore in detail the phase behavior of the system in terms of the temperature and the lattice constant of the underlying substrate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>22457153</pmid><doi>10.1140/epje/i2012-12025-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2012-03, Vol.35 (3), p.1-8, Article 25
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_963488502
source SpringerLink Journals
subjects Biological and Medical Physics
Biophysics
Chemistry
Complex Fluids and Microfluidics
Complex Systems
Exact sciences and technology
General and physical chemistry
Nanotechnology
Physics
Physics and Astronomy
Polymer Sciences
Regular Article
Soft and Granular Matter
Surface physical chemistry
Surfaces and Interfaces
Thin Films
title Simulating self-organized molecular patterns using interaction-site models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20self-organized%20molecular%20patterns%20using%20interaction-site%20models&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Balb%C3%A1s%20Gambra,%20M.&rft.date=2012-03-01&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=25&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2012-12025-x&rft_dat=%3Cproquest_cross%3E963488502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963488502&rft_id=info:pmid/22457153&rfr_iscdi=true