Nano-lens diffraction around a single heated nano particle

The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2012-03, Vol.20 (7), p.8055-8070
Hauptverfasser: Selmke, Markus, Braun, Marco, Cichos, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8070
container_issue 7
container_start_page 8055
container_title Optics express
container_volume 20
creator Selmke, Markus
Braun, Marco
Cichos, Frank
description The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [Appl. Opt. 34, 41-50 (1995)], [Jpn. J. Appl. Phys. 45, 7141-7151 (2006)], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic scattering treatment was established [Phys. Rev. B 73, 045424 (2006)] during the emergence of this new technique. Our recent study [ACS Nano, DOI: 10.1021/nn300181h] extended this approach into a full ab-initio model and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin, is also the lens-like action of the induced refractive index profile only hidden in the complicated guise of the theoretical generalized Mie-like framework. The diffraction model proposed here yields succinct analytical expressions for the axial photothermal signal shape and magnitude and its angular distribution, all showing the clear lens-signature. It is further demonstrated, that the Gouy-phase of a Gaussian beam does not contribute to the relative photothermal signal in forward direction, a fact which is not easily evident from the more rigorous EM treatment. The presented model may thus be used to estimate the signal shape and magnitude in photothermal single particle microscopy.
doi_str_mv 10.1364/oe.20.008055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_959135245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>959135245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-d34042664bfda4de74f76c2fd603c5cd96e402777a8420f76993aba3457a3c03</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EoqWwMSNvLCTc2NdxzYaq8pAqunS3XD8gKHWKnQz8e1q1IKZ7pPvpSOcj5LqCsuI13ne-ZFACTEGIEzKuQGGBMJWn__KIXOT8CVChVPKcjBhDwVHKMXl4M7ErWh8zdU0Iydi-6SI1qRuio4bmJr63nn5403tH4w6mW5P6xrb-kpwF02Z_dbwTsnqar2YvxWL5_Dp7XBQWuewLxxGQ1TWugzPovMQga8uCq4FbYZ2qPQKTUpopMtj9lOJmbTgKabgFPiG3h9pt6r4Gn3u9abL1bWui74aslVAVF_tBE3J3IG3qck4-6G1qNiZ96wr03pVezjUDfXC1w2-OxcN6490f_CuH_wA0ZWMD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>959135245</pqid></control><display><type>article</type><title>Nano-lens diffraction around a single heated nano particle</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Selmke, Markus ; Braun, Marco ; Cichos, Frank</creator><creatorcontrib>Selmke, Markus ; Braun, Marco ; Cichos, Frank</creatorcontrib><description>The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [Appl. Opt. 34, 41-50 (1995)], [Jpn. J. Appl. Phys. 45, 7141-7151 (2006)], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic scattering treatment was established [Phys. Rev. B 73, 045424 (2006)] during the emergence of this new technique. Our recent study [ACS Nano, DOI: 10.1021/nn300181h] extended this approach into a full ab-initio model and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin, is also the lens-like action of the induced refractive index profile only hidden in the complicated guise of the theoretical generalized Mie-like framework. The diffraction model proposed here yields succinct analytical expressions for the axial photothermal signal shape and magnitude and its angular distribution, all showing the clear lens-signature. It is further demonstrated, that the Gouy-phase of a Gaussian beam does not contribute to the relative photothermal signal in forward direction, a fact which is not easily evident from the more rigorous EM treatment. The presented model may thus be used to estimate the signal shape and magnitude in photothermal single particle microscopy.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.20.008055</identifier><identifier>PMID: 22453477</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Computer-Aided Design ; Equipment Design ; Equipment Failure Analysis ; Hot Temperature ; Lenses ; Light ; Models, Theoretical ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology - instrumentation ; Refractometry - instrumentation ; Scattering, Radiation</subject><ispartof>Optics express, 2012-03, Vol.20 (7), p.8055-8070</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-d34042664bfda4de74f76c2fd603c5cd96e402777a8420f76993aba3457a3c03</citedby><cites>FETCH-LOGICAL-c437t-d34042664bfda4de74f76c2fd603c5cd96e402777a8420f76993aba3457a3c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22453477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selmke, Markus</creatorcontrib><creatorcontrib>Braun, Marco</creatorcontrib><creatorcontrib>Cichos, Frank</creatorcontrib><title>Nano-lens diffraction around a single heated nano particle</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [Appl. Opt. 34, 41-50 (1995)], [Jpn. J. Appl. Phys. 45, 7141-7151 (2006)], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic scattering treatment was established [Phys. Rev. B 73, 045424 (2006)] during the emergence of this new technique. Our recent study [ACS Nano, DOI: 10.1021/nn300181h] extended this approach into a full ab-initio model and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin, is also the lens-like action of the induced refractive index profile only hidden in the complicated guise of the theoretical generalized Mie-like framework. The diffraction model proposed here yields succinct analytical expressions for the axial photothermal signal shape and magnitude and its angular distribution, all showing the clear lens-signature. It is further demonstrated, that the Gouy-phase of a Gaussian beam does not contribute to the relative photothermal signal in forward direction, a fact which is not easily evident from the more rigorous EM treatment. The presented model may thus be used to estimate the signal shape and magnitude in photothermal single particle microscopy.</description><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Hot Temperature</subject><subject>Lenses</subject><subject>Light</subject><subject>Models, Theoretical</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Refractometry - instrumentation</subject><subject>Scattering, Radiation</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAUhS0EoqWwMSNvLCTc2NdxzYaq8pAqunS3XD8gKHWKnQz8e1q1IKZ7pPvpSOcj5LqCsuI13ne-ZFACTEGIEzKuQGGBMJWn__KIXOT8CVChVPKcjBhDwVHKMXl4M7ErWh8zdU0Iydi-6SI1qRuio4bmJr63nn5403tH4w6mW5P6xrb-kpwF02Z_dbwTsnqar2YvxWL5_Dp7XBQWuewLxxGQ1TWugzPovMQga8uCq4FbYZ2qPQKTUpopMtj9lOJmbTgKabgFPiG3h9pt6r4Gn3u9abL1bWui74aslVAVF_tBE3J3IG3qck4-6G1qNiZ96wr03pVezjUDfXC1w2-OxcN6490f_CuH_wA0ZWMD</recordid><startdate>20120326</startdate><enddate>20120326</enddate><creator>Selmke, Markus</creator><creator>Braun, Marco</creator><creator>Cichos, Frank</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120326</creationdate><title>Nano-lens diffraction around a single heated nano particle</title><author>Selmke, Markus ; Braun, Marco ; Cichos, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-d34042664bfda4de74f76c2fd603c5cd96e402777a8420f76993aba3457a3c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Hot Temperature</topic><topic>Lenses</topic><topic>Light</topic><topic>Models, Theoretical</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Refractometry - instrumentation</topic><topic>Scattering, Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selmke, Markus</creatorcontrib><creatorcontrib>Braun, Marco</creatorcontrib><creatorcontrib>Cichos, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selmke, Markus</au><au>Braun, Marco</au><au>Cichos, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-lens diffraction around a single heated nano particle</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2012-03-26</date><risdate>2012</risdate><volume>20</volume><issue>7</issue><spage>8055</spage><epage>8070</epage><pages>8055-8070</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>The action of a nanoscopic spherically symmetric refractive index profile on a focused Gaussian beam may easily be envisaged as the action of a phase-modifying element, i.e. a lens: Rays traversing the inhomogeneous refractive index field n(r) collect an additional phase along their trajectory which advances or retards their phase with respect to the unperturbed ray. This lens-like action has long been understood as being the mechanism behind the signal of thin sample photothermal absorption measurements [Appl. Opt. 34, 41-50 (1995)], [Jpn. J. Appl. Phys. 45, 7141-7151 (2006)], where a cylindrical symmetry and a different lengthscale is present. In photothermal single (nano-)particle microscopy, however, a complicated, though prediction-wise limited, electrodynamic scattering treatment was established [Phys. Rev. B 73, 045424 (2006)] during the emergence of this new technique. Our recent study [ACS Nano, DOI: 10.1021/nn300181h] extended this approach into a full ab-initio model and showed for the first time that the mechanism behind the signal, despite its nanoscopic origin, is also the lens-like action of the induced refractive index profile only hidden in the complicated guise of the theoretical generalized Mie-like framework. The diffraction model proposed here yields succinct analytical expressions for the axial photothermal signal shape and magnitude and its angular distribution, all showing the clear lens-signature. It is further demonstrated, that the Gouy-phase of a Gaussian beam does not contribute to the relative photothermal signal in forward direction, a fact which is not easily evident from the more rigorous EM treatment. The presented model may thus be used to estimate the signal shape and magnitude in photothermal single particle microscopy.</abstract><cop>United States</cop><pmid>22453477</pmid><doi>10.1364/oe.20.008055</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2012-03, Vol.20 (7), p.8055-8070
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_959135245
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Computer Simulation
Computer-Aided Design
Equipment Design
Equipment Failure Analysis
Hot Temperature
Lenses
Light
Models, Theoretical
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanotechnology - instrumentation
Refractometry - instrumentation
Scattering, Radiation
title Nano-lens diffraction around a single heated nano particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-lens%20diffraction%20around%20a%20single%20heated%20nano%20particle&rft.jtitle=Optics%20express&rft.au=Selmke,%20Markus&rft.date=2012-03-26&rft.volume=20&rft.issue=7&rft.spage=8055&rft.epage=8070&rft.pages=8055-8070&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.20.008055&rft_dat=%3Cproquest_cross%3E959135245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=959135245&rft_id=info:pmid/22453477&rfr_iscdi=true