Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal

Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vector ecology 2011-12, Vol.36 (2), p.279-291
Hauptverfasser: Lourenço, Pedro M, Sousa, Carla A, Seixas, Júlia, Lopes, Pedro, Novo, Maria T, Almeida, A. Paulo G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 279
container_title Journal of vector ecology
container_volume 36
creator Lourenço, Pedro M
Sousa, Carla A
Seixas, Júlia
Lopes, Pedro
Novo, Maria T
Almeida, A. Paulo G
description Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p
doi_str_mv 10.1111/j.1948-7134.2011.00168.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954661028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>907998166</sourcerecordid><originalsourceid>FETCH-LOGICAL-b4748-9e71a9009e37aa7a87867738189711254c8994f649aa5a1a8ff24b4272e407573</originalsourceid><addsrcrecordid>eNqNkUtvEzEUha0K1PdfqCw2rDL4ehw_FiyipKVBDa0E7a6ybtI7ZaLJONgZaP49HlK6YEO9sK90v3N0rMMYB1FAPh-WBThlBwZKVUgBUAgB2hZPe-zwZfEmz8LCAAyIA3aU0lKI0iqr99mBlCBd6dwhux-1Yf2dGkocNzGsMf7sEp9Qm-rNls_CAzV1-8i71N-z68n0K_8yuZvyuuXIL0JcUeQzbDDWIetGkbBf3YS46R6xOWFvK2wSnT6_x-z24vzb-HJwdf1pOh5dDebK5LiODKATwlFpEA1aY7UxpQXrDIAcqoV1TlVaOcQhAtqqkmqupJGkhBma8pi93_muY_jRUdr4VZ0W1DTYUs7l3VBpDULa_5PCOGdB60y--4dchi62-RveyZxOSw0ZsjtoEUNKkSq_jvUK49aD8H1Vfun7RnzfiO-r8n-q8k9Zevbs381X9PAi_NtNBj7ugF91Q9tXG_vPd-fjPGW93unndQgtvT7Zb-1Orxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927736261</pqid></control><display><type>article</type><title>Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>BioOne Complete</source><creator>Lourenço, Pedro M ; Sousa, Carla A ; Seixas, Júlia ; Lopes, Pedro ; Novo, Maria T ; Almeida, A. Paulo G</creator><creatorcontrib>Lourenço, Pedro M ; Sousa, Carla A ; Seixas, Júlia ; Lopes, Pedro ; Novo, Maria T ; Almeida, A. Paulo G</creatorcontrib><description>Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p&lt;0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the models ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities.</description><identifier>ISSN: 1081-1710</identifier><identifier>EISSN: 1948-7134</identifier><identifier>DOI: 10.1111/j.1948-7134.2011.00168.x</identifier><identifier>PMID: 22129399</identifier><language>eng</language><publisher>Oxford, UK: Society for Vector Ecology</publisher><subject>Algorithms ; Animals ; Anopheles - physiology ; Anopheles atroparvus ; Arthropoda ; Environmental Monitoring - methods ; Insect Vectors ; Life Cycle Stages ; malaria ; Malaria - transmission ; Models, Theoretical ; NDVI ; Population Density ; Population Growth ; Portugal ; Remote Sensing Technology ; Spacecraft ; Temperature</subject><ispartof>Journal of vector ecology, 2011-12, Vol.36 (2), p.279-291</ispartof><rights>2011 The Society for Vector Ecology</rights><rights>2011 The Society for Vector Ecology.</rights><rights>Copyright Society for Vector Ecology Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b4748-9e71a9009e37aa7a87867738189711254c8994f649aa5a1a8ff24b4272e407573</citedby><cites>FETCH-LOGICAL-b4748-9e71a9009e37aa7a87867738189711254c8994f649aa5a1a8ff24b4272e407573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1111/j.1948-7134.2011.00168.x$$EPDF$$P50$$Gbioone$$H</linktopdf><link.rule.ids>314,776,780,26957,27903,27904,52341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22129399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lourenço, Pedro M</creatorcontrib><creatorcontrib>Sousa, Carla A</creatorcontrib><creatorcontrib>Seixas, Júlia</creatorcontrib><creatorcontrib>Lopes, Pedro</creatorcontrib><creatorcontrib>Novo, Maria T</creatorcontrib><creatorcontrib>Almeida, A. Paulo G</creatorcontrib><title>Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal</title><title>Journal of vector ecology</title><addtitle>J Vector Ecol</addtitle><description>Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p&lt;0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the models ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Anopheles - physiology</subject><subject>Anopheles atroparvus</subject><subject>Arthropoda</subject><subject>Environmental Monitoring - methods</subject><subject>Insect Vectors</subject><subject>Life Cycle Stages</subject><subject>malaria</subject><subject>Malaria - transmission</subject><subject>Models, Theoretical</subject><subject>NDVI</subject><subject>Population Density</subject><subject>Population Growth</subject><subject>Portugal</subject><subject>Remote Sensing Technology</subject><subject>Spacecraft</subject><subject>Temperature</subject><issn>1081-1710</issn><issn>1948-7134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtvEzEUha0K1PdfqCw2rDL4ehw_FiyipKVBDa0E7a6ybtI7ZaLJONgZaP49HlK6YEO9sK90v3N0rMMYB1FAPh-WBThlBwZKVUgBUAgB2hZPe-zwZfEmz8LCAAyIA3aU0lKI0iqr99mBlCBd6dwhux-1Yf2dGkocNzGsMf7sEp9Qm-rNls_CAzV1-8i71N-z68n0K_8yuZvyuuXIL0JcUeQzbDDWIetGkbBf3YS46R6xOWFvK2wSnT6_x-z24vzb-HJwdf1pOh5dDebK5LiODKATwlFpEA1aY7UxpQXrDIAcqoV1TlVaOcQhAtqqkmqupJGkhBma8pi93_muY_jRUdr4VZ0W1DTYUs7l3VBpDULa_5PCOGdB60y--4dchi62-RveyZxOSw0ZsjtoEUNKkSq_jvUK49aD8H1Vfun7RnzfiO-r8n-q8k9Zevbs381X9PAi_NtNBj7ugF91Q9tXG_vPd-fjPGW93unndQgtvT7Zb-1Orxo</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Lourenço, Pedro M</creator><creator>Sousa, Carla A</creator><creator>Seixas, Júlia</creator><creator>Lopes, Pedro</creator><creator>Novo, Maria T</creator><creator>Almeida, A. Paulo G</creator><general>Society for Vector Ecology</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201112</creationdate><title>Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal</title><author>Lourenço, Pedro M ; Sousa, Carla A ; Seixas, Júlia ; Lopes, Pedro ; Novo, Maria T ; Almeida, A. Paulo G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b4748-9e71a9009e37aa7a87867738189711254c8994f649aa5a1a8ff24b4272e407573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Anopheles - physiology</topic><topic>Anopheles atroparvus</topic><topic>Arthropoda</topic><topic>Environmental Monitoring - methods</topic><topic>Insect Vectors</topic><topic>Life Cycle Stages</topic><topic>malaria</topic><topic>Malaria - transmission</topic><topic>Models, Theoretical</topic><topic>NDVI</topic><topic>Population Density</topic><topic>Population Growth</topic><topic>Portugal</topic><topic>Remote Sensing Technology</topic><topic>Spacecraft</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenço, Pedro M</creatorcontrib><creatorcontrib>Sousa, Carla A</creatorcontrib><creatorcontrib>Seixas, Júlia</creatorcontrib><creatorcontrib>Lopes, Pedro</creatorcontrib><creatorcontrib>Novo, Maria T</creatorcontrib><creatorcontrib>Almeida, A. Paulo G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of vector ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenço, Pedro M</au><au>Sousa, Carla A</au><au>Seixas, Júlia</au><au>Lopes, Pedro</au><au>Novo, Maria T</au><au>Almeida, A. Paulo G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal</atitle><jtitle>Journal of vector ecology</jtitle><addtitle>J Vector Ecol</addtitle><date>2011-12</date><risdate>2011</risdate><volume>36</volume><issue>2</issue><spage>279</spage><epage>291</epage><pages>279-291</pages><issn>1081-1710</issn><eissn>1948-7134</eissn><abstract>Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p&lt;0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the models ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities.</abstract><cop>Oxford, UK</cop><pub>Society for Vector Ecology</pub><pmid>22129399</pmid><doi>10.1111/j.1948-7134.2011.00168.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1081-1710
ispartof Journal of vector ecology, 2011-12, Vol.36 (2), p.279-291
issn 1081-1710
1948-7134
language eng
recordid cdi_proquest_miscellaneous_954661028
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; BioOne Complete
subjects Algorithms
Animals
Anopheles - physiology
Anopheles atroparvus
Arthropoda
Environmental Monitoring - methods
Insect Vectors
Life Cycle Stages
malaria
Malaria - transmission
Models, Theoretical
NDVI
Population Density
Population Growth
Portugal
Remote Sensing Technology
Spacecraft
Temperature
title Anopheles atroparvus Density Modeling using MODIS NDVI in a Former Malarious Area in Portugal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anopheles%20atroparvus%20Density%20Modeling%20using%20MODIS%20NDVI%20in%20a%20Former%20Malarious%20Area%20in%20Portugal&rft.jtitle=Journal%20of%20vector%20ecology&rft.au=Louren%C3%A7o,%20Pedro%20M&rft.date=2011-12&rft.volume=36&rft.issue=2&rft.spage=279&rft.epage=291&rft.pages=279-291&rft.issn=1081-1710&rft.eissn=1948-7134&rft_id=info:doi/10.1111/j.1948-7134.2011.00168.x&rft_dat=%3Cproquest_cross%3E907998166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927736261&rft_id=info:pmid/22129399&rfr_iscdi=true