Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse
Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that “tight” NF can be equal or “better” than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2011-10, Vol.34 (1-3), p.50-56 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1-3 |
container_start_page | 50 |
container_title | Desalination and water treatment |
container_volume | 34 |
creator | Yangali-Quintanilla, Victor Maeng, Sung Kyu Fujioka, Takahiro Kennedy, Maria Li, Zhenyu Amy, Gary |
description | Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that “tight” NF can be equal or “better” than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used. |
doi_str_mv | 10.5004/dwt.2011.2860 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954652883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624201764</els_id><sourcerecordid>1934072002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-6e730f9e82acd15d457275ca8962b9955b4ab593de99b06f02f82109dbbc0f0a3</originalsourceid><addsrcrecordid>eNp1kEtr3DAQgE1poSHZY--CEHLyRpIl2zqWkD4gtJf2LMbyaKtgS6lGu6H_vlo2hFDoXGYYvnnwNc0Hwbeac3UzP5Wt5EJs5djzN82ZMEq1nRn7t6_q982G6IHX0GrQSp410zeIyYelZCghRXagLct4wEzIEq2JAjGfMiu_sPbXdICFJc9wxbwLccdS3kEMjrkUC6whQizEQmRPUDDXiT3hRfPOw0K4ec7nzc9Pdz9uv7T33z9_vf143zotRGl7HDruDY4S3Cz0rPQgB-1gNL2cjNF6UjBp081ozMR7z6UfpeBmnibHPYfuvLk-7X3M6fceqdg1kMNlgYhpT9Zo1Ws5jl0lL_8hH9I-x_qcFaZTfJCcy0q1J8rlRJTR28ccVsh_rOD26NxW5_bo3B6dV_7qeSuQg8VniC7Qy5DUqhuEUJUbThxWGYeA2ZILGB3OIaMrdk7hPxf-AjwVlJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934072002</pqid></control><display><type>article</type><title>Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse</title><source>Alma/SFX Local Collection</source><creator>Yangali-Quintanilla, Victor ; Maeng, Sung Kyu ; Fujioka, Takahiro ; Kennedy, Maria ; Li, Zhenyu ; Amy, Gary</creator><creatorcontrib>Yangali-Quintanilla, Victor ; Maeng, Sung Kyu ; Fujioka, Takahiro ; Kennedy, Maria ; Li, Zhenyu ; Amy, Gary</creatorcontrib><description>Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that “tight” NF can be equal or “better” than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.5004/dwt.2011.2860</identifier><language>eng</language><publisher>L'Aquila: Elsevier Inc</publisher><subject>Agrochemicals ; Applied sciences ; Aquifers ; Contaminants ; Dealing ; Drugs ; Emerging contaminants ; Endocrine disruptors ; Exact sciences and technology ; Groundwater recharge ; Membranes ; Nanofiltration ; Nanotechnology ; Organic contaminants ; Pesticides ; Pilots ; Pollution ; Removal ; Reverse osmosis ; Water pollution ; Water reuse ; Water treatment and pollution</subject><ispartof>Desalination and water treatment, 2011-10, Vol.34 (1-3), p.50-56</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-6e730f9e82acd15d457275ca8962b9955b4ab593de99b06f02f82109dbbc0f0a3</citedby><cites>FETCH-LOGICAL-c511t-6e730f9e82acd15d457275ca8962b9955b4ab593de99b06f02f82109dbbc0f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25437114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yangali-Quintanilla, Victor</creatorcontrib><creatorcontrib>Maeng, Sung Kyu</creatorcontrib><creatorcontrib>Fujioka, Takahiro</creatorcontrib><creatorcontrib>Kennedy, Maria</creatorcontrib><creatorcontrib>Li, Zhenyu</creatorcontrib><creatorcontrib>Amy, Gary</creatorcontrib><title>Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse</title><title>Desalination and water treatment</title><description>Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that “tight” NF can be equal or “better” than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.</description><subject>Agrochemicals</subject><subject>Applied sciences</subject><subject>Aquifers</subject><subject>Contaminants</subject><subject>Dealing</subject><subject>Drugs</subject><subject>Emerging contaminants</subject><subject>Endocrine disruptors</subject><subject>Exact sciences and technology</subject><subject>Groundwater recharge</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Organic contaminants</subject><subject>Pesticides</subject><subject>Pilots</subject><subject>Pollution</subject><subject>Removal</subject><subject>Reverse osmosis</subject><subject>Water pollution</subject><subject>Water reuse</subject><subject>Water treatment and pollution</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtr3DAQgE1poSHZY--CEHLyRpIl2zqWkD4gtJf2LMbyaKtgS6lGu6H_vlo2hFDoXGYYvnnwNc0Hwbeac3UzP5Wt5EJs5djzN82ZMEq1nRn7t6_q982G6IHX0GrQSp410zeIyYelZCghRXagLct4wEzIEq2JAjGfMiu_sPbXdICFJc9wxbwLccdS3kEMjrkUC6whQizEQmRPUDDXiT3hRfPOw0K4ec7nzc9Pdz9uv7T33z9_vf143zotRGl7HDruDY4S3Cz0rPQgB-1gNL2cjNF6UjBp081ozMR7z6UfpeBmnibHPYfuvLk-7X3M6fceqdg1kMNlgYhpT9Zo1Ws5jl0lL_8hH9I-x_qcFaZTfJCcy0q1J8rlRJTR28ccVsh_rOD26NxW5_bo3B6dV_7qeSuQg8VniC7Qy5DUqhuEUJUbThxWGYeA2ZILGB3OIaMrdk7hPxf-AjwVlJw</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Yangali-Quintanilla, Victor</creator><creator>Maeng, Sung Kyu</creator><creator>Fujioka, Takahiro</creator><creator>Kennedy, Maria</creator><creator>Li, Zhenyu</creator><creator>Amy, Gary</creator><general>Elsevier Inc</general><general>Desalination Publications</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7SU</scope></search><sort><creationdate>20111001</creationdate><title>Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse</title><author>Yangali-Quintanilla, Victor ; Maeng, Sung Kyu ; Fujioka, Takahiro ; Kennedy, Maria ; Li, Zhenyu ; Amy, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-6e730f9e82acd15d457275ca8962b9955b4ab593de99b06f02f82109dbbc0f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agrochemicals</topic><topic>Applied sciences</topic><topic>Aquifers</topic><topic>Contaminants</topic><topic>Dealing</topic><topic>Drugs</topic><topic>Emerging contaminants</topic><topic>Endocrine disruptors</topic><topic>Exact sciences and technology</topic><topic>Groundwater recharge</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Organic contaminants</topic><topic>Pesticides</topic><topic>Pilots</topic><topic>Pollution</topic><topic>Removal</topic><topic>Reverse osmosis</topic><topic>Water pollution</topic><topic>Water reuse</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yangali-Quintanilla, Victor</creatorcontrib><creatorcontrib>Maeng, Sung Kyu</creatorcontrib><creatorcontrib>Fujioka, Takahiro</creatorcontrib><creatorcontrib>Kennedy, Maria</creatorcontrib><creatorcontrib>Li, Zhenyu</creatorcontrib><creatorcontrib>Amy, Gary</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yangali-Quintanilla, Victor</au><au>Maeng, Sung Kyu</au><au>Fujioka, Takahiro</au><au>Kennedy, Maria</au><au>Li, Zhenyu</au><au>Amy, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse</atitle><jtitle>Desalination and water treatment</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>34</volume><issue>1-3</issue><spage>50</spage><epage>56</epage><pages>50-56</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that “tight” NF can be equal or “better” than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.</abstract><cop>L'Aquila</cop><pub>Elsevier Inc</pub><doi>10.5004/dwt.2011.2860</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-3986 |
ispartof | Desalination and water treatment, 2011-10, Vol.34 (1-3), p.50-56 |
issn | 1944-3986 1944-3994 1944-3986 |
language | eng |
recordid | cdi_proquest_miscellaneous_954652883 |
source | Alma/SFX Local Collection |
subjects | Agrochemicals Applied sciences Aquifers Contaminants Dealing Drugs Emerging contaminants Endocrine disruptors Exact sciences and technology Groundwater recharge Membranes Nanofiltration Nanotechnology Organic contaminants Pesticides Pilots Pollution Removal Reverse osmosis Water pollution Water reuse Water treatment and pollution |
title | Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofiltration%20vs.%20reverse%20osmosis%20for%20the%20removal%20of%20emerging%20organic%20contaminants%20in%20water%20reuse&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Yangali-Quintanilla,%20Victor&rft.date=2011-10-01&rft.volume=34&rft.issue=1-3&rft.spage=50&rft.epage=56&rft.pages=50-56&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.5004/dwt.2011.2860&rft_dat=%3Cproquest_cross%3E1934072002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934072002&rft_id=info:pmid/&rft_els_id=S1944398624201764&rfr_iscdi=true |