Low-thrust propulsion in a coplanar circular restricted four body problem

This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identifies eight natural equilibri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2012-02, Vol.112 (2), p.191-219
Hauptverfasser: Ceccaroni, Marta, Biggs, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 2
container_start_page 191
container_title Celestial mechanics and dynamical astronomy
container_volume 112
creator Ceccaroni, Marta
Biggs, James
description This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identifies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the Solar System. Following this, the model incorporates ‘near term’ low-thrust propulsion capabilities to generate surfaces of artificial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identified. Throughout the analysis the Sun-Jupiter-asteroid-spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L 4 . It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1.5 × 10 −4  N for a 1000 kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the (624) Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplified CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-(624) Hektor-spacecraft is undertaken, which tests the validity of the stability analysis of the simplified model.
doi_str_mv 10.1007/s10569-011-9391-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954646604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577483191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-9729ec934f5cace5300cb819892b5fa5291653396f95680ddee559e7005643813</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG_Fi6fopOmknaMsfsGCFz2HNk21S7epSYu7_94sFQTB08zheWceXsYuBdwIgPw2CEBFHITgJEnw3RFbCMxTTlleHLMFUCp5SlicsrMQNgCAQLhgz2v3xccPP4UxGbwbpi60rk_aPikT44au7EufmNabqYuLt2H0rRltnTRu8knl6v0hVnV2e85OmrIL9uJnLtnbw_3r6omvXx6fV3drbjJUI6c8JWtIZg2a0liUAKYqBBWUVtiUmJJQKCWphlAVUNfWIpLNo7DKZCHkkl3Pd-PfzykK6W0bjO2iqnVT0ISZypSCLJJXf8hNlO6jnCZBKicUMkJihox3IXjb6MG329LvtQB9qFbP1epYrT5Uq3cxk86ZENn-3frfw_-HvgEewXue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919679513</pqid></control><display><type>article</type><title>Low-thrust propulsion in a coplanar circular restricted four body problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ceccaroni, Marta ; Biggs, James</creator><creatorcontrib>Ceccaroni, Marta ; Biggs, James</creatorcontrib><description>This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identifies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the Solar System. Following this, the model incorporates ‘near term’ low-thrust propulsion capabilities to generate surfaces of artificial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identified. Throughout the analysis the Sun-Jupiter-asteroid-spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L 4 . It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1.5 × 10 −4  N for a 1000 kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the (624) Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplified CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-(624) Hektor-spacecraft is undertaken, which tests the validity of the stability analysis of the simplified model.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-011-9391-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Asteroids ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Dynamical Systems and Ergodic Theory ; Geophysics/Geodesy ; Numerical analysis ; Orbits ; Original Article ; Physics ; Physics and Astronomy ; Spacecraft ; Stability analysis</subject><ispartof>Celestial mechanics and dynamical astronomy, 2012-02, Vol.112 (2), p.191-219</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-9729ec934f5cace5300cb819892b5fa5291653396f95680ddee559e7005643813</citedby><cites>FETCH-LOGICAL-c456t-9729ec934f5cace5300cb819892b5fa5291653396f95680ddee559e7005643813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-011-9391-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-011-9391-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ceccaroni, Marta</creatorcontrib><creatorcontrib>Biggs, James</creatorcontrib><title>Low-thrust propulsion in a coplanar circular restricted four body problem</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identifies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the Solar System. Following this, the model incorporates ‘near term’ low-thrust propulsion capabilities to generate surfaces of artificial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identified. Throughout the analysis the Sun-Jupiter-asteroid-spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L 4 . It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1.5 × 10 −4  N for a 1000 kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the (624) Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplified CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-(624) Hektor-spacecraft is undertaken, which tests the validity of the stability analysis of the simplified model.</description><subject>Aerospace Technology and Astronautics</subject><subject>Asteroids</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Geophysics/Geodesy</subject><subject>Numerical analysis</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spacecraft</subject><subject>Stability analysis</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG_Fi6fopOmknaMsfsGCFz2HNk21S7epSYu7_94sFQTB08zheWceXsYuBdwIgPw2CEBFHITgJEnw3RFbCMxTTlleHLMFUCp5SlicsrMQNgCAQLhgz2v3xccPP4UxGbwbpi60rk_aPikT44au7EufmNabqYuLt2H0rRltnTRu8knl6v0hVnV2e85OmrIL9uJnLtnbw_3r6omvXx6fV3drbjJUI6c8JWtIZg2a0liUAKYqBBWUVtiUmJJQKCWphlAVUNfWIpLNo7DKZCHkkl3Pd-PfzykK6W0bjO2iqnVT0ISZypSCLJJXf8hNlO6jnCZBKicUMkJihox3IXjb6MG329LvtQB9qFbP1epYrT5Uq3cxk86ZENn-3frfw_-HvgEewXue</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Ceccaroni, Marta</creator><creator>Biggs, James</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120201</creationdate><title>Low-thrust propulsion in a coplanar circular restricted four body problem</title><author>Ceccaroni, Marta ; Biggs, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-9729ec934f5cace5300cb819892b5fa5291653396f95680ddee559e7005643813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Asteroids</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Geophysics/Geodesy</topic><topic>Numerical analysis</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spacecraft</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceccaroni, Marta</creatorcontrib><creatorcontrib>Biggs, James</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceccaroni, Marta</au><au>Biggs, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-thrust propulsion in a coplanar circular restricted four body problem</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>112</volume><issue>2</issue><spage>191</spage><epage>219</epage><pages>191-219</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identifies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the Solar System. Following this, the model incorporates ‘near term’ low-thrust propulsion capabilities to generate surfaces of artificial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identified. Throughout the analysis the Sun-Jupiter-asteroid-spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L 4 . It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1.5 × 10 −4  N for a 1000 kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the (624) Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplified CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-(624) Hektor-spacecraft is undertaken, which tests the validity of the stability analysis of the simplified model.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-011-9391-x</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2012-02, Vol.112 (2), p.191-219
issn 0923-2958
1572-9478
language eng
recordid cdi_proquest_miscellaneous_954646604
source SpringerLink Journals - AutoHoldings
subjects Aerospace Technology and Astronautics
Asteroids
Astrophysics
Astrophysics and Astroparticles
Classical Mechanics
Dynamical Systems and Ergodic Theory
Geophysics/Geodesy
Numerical analysis
Orbits
Original Article
Physics
Physics and Astronomy
Spacecraft
Stability analysis
title Low-thrust propulsion in a coplanar circular restricted four body problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-thrust%20propulsion%20in%20a%20coplanar%20circular%20restricted%20four%20body%20problem&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Ceccaroni,%20Marta&rft.date=2012-02-01&rft.volume=112&rft.issue=2&rft.spage=191&rft.epage=219&rft.pages=191-219&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-011-9391-x&rft_dat=%3Cproquest_cross%3E2577483191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919679513&rft_id=info:pmid/&rfr_iscdi=true