A Model of Genetic Search for Beneficial Mutations: Estimating the Constructive Capacities of Mutagenesis
We attempted to answer the following question: What evolutionary conditions are required to generate novel genetic modules? Our broad formulation of the problem allows us to simultaneously consider such issues as the relationship between the stage of “genetic search” and the rate of adaptive evoluti...
Gespeichert in:
Veröffentlicht in: | Journal of molecular evolution 2011-12, Vol.73 (5-6), p.337-354 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 5-6 |
container_start_page | 337 |
container_title | Journal of molecular evolution |
container_volume | 73 |
creator | Ananko, Grigory G. |
description | We attempted to answer the following question: What evolutionary conditions are required to generate novel genetic modules? Our broad formulation of the problem allows us to simultaneously consider such issues as the relationship between the stage of “genetic search” and the rate of adaptive evolution; the theoretical limits to the generative capacities of spontaneous mutagenesis; and the correlation between genome organization and evolvability. We show that adaptive evolution is feasible only when the mutation rate is fine-tuned to a specific range of values and the structures of the genome and genes are optimized in a certain way. Our quantitative analysis has demonstrated that the rate of evolution of novelty depends on several parameters, such as genome size, the length of a module, the size of the adjacent nonfunctional DNA spacers, and the mutation rate at various genomic scales. We evaluated the efficiency of some mechanisms that increase evolvability: bias in the spectrum of mutation rates towards small mutations, and the availability and size of nonfunctional DNA spacers. We show that the probability of successful duplication and insertion of a copy of a functional module increases by several orders of magnitude depending on the length of the spacers flanking the module. We infer that the adaptive evolution of multicellular organisms has become feasible because of the abundance of nonfunctional DNA spacers, particularly introns, in the genome. We also discuss possible reasons underlying evolutionary retention of the mechanisms that increase evolvability. |
doi_str_mv | 10.1007/s00239-011-9482-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954643945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574420881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-2c7f62a51055b5e542764444cc6b26274afde00453eaa57ac39962b1a03c7f753</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMotlZ_gBsJblyN5jlp3NVSq2Bxoa5DmmbalOlMTTKC_fVmmKogmEXCvfnOyeMAcI7RNUZI3ASECJUZwjiTbEiy3QHoY0ZJ1k6HoJ-2SUaGjPXASQhrhLDgkh6DHiEEEylFH7gRnNULW8K6gFNb2egMfLHamxUsag_vUqtwxukSzpqoo6urcAsnIbpNKqoljCsLx6kZfWOi-0iF3mrjorOhtWxFy-QRXDgFR4Uugz3brwPwdj95HT9kT8_Tx_HoKTOUs5gRI4qcaI4R53NuOSMiZ2kYk89JTgTTxcIixDi1WnOhDZUyJ3OsEU1KwekAXHW-W1-_NzZEtXHB2LLUla2boCRnOaOSteTlH3JdN75Kl1MSD0XOBWIJwh1kfB2Ct4Xa-vR4_6kwUm0KqktBpRRUm4LaJc3F3riZb-ziR_H97QkgHRDSVrW0_vfk_12_ANIJkg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918765704</pqid></control><display><type>article</type><title>A Model of Genetic Search for Beneficial Mutations: Estimating the Constructive Capacities of Mutagenesis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ananko, Grigory G.</creator><creatorcontrib>Ananko, Grigory G.</creatorcontrib><description>We attempted to answer the following question: What evolutionary conditions are required to generate novel genetic modules? Our broad formulation of the problem allows us to simultaneously consider such issues as the relationship between the stage of “genetic search” and the rate of adaptive evolution; the theoretical limits to the generative capacities of spontaneous mutagenesis; and the correlation between genome organization and evolvability. We show that adaptive evolution is feasible only when the mutation rate is fine-tuned to a specific range of values and the structures of the genome and genes are optimized in a certain way. Our quantitative analysis has demonstrated that the rate of evolution of novelty depends on several parameters, such as genome size, the length of a module, the size of the adjacent nonfunctional DNA spacers, and the mutation rate at various genomic scales. We evaluated the efficiency of some mechanisms that increase evolvability: bias in the spectrum of mutation rates towards small mutations, and the availability and size of nonfunctional DNA spacers. We show that the probability of successful duplication and insertion of a copy of a functional module increases by several orders of magnitude depending on the length of the spacers flanking the module. We infer that the adaptive evolution of multicellular organisms has become feasible because of the abundance of nonfunctional DNA spacers, particularly introns, in the genome. We also discuss possible reasons underlying evolutionary retention of the mechanisms that increase evolvability.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-011-9482-z</identifier><identifier>PMID: 22212997</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Abundance ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Cell Biology ; Deoxyribonucleic acid ; DNA ; DNA, Intergenic - genetics ; Escherichia coli - genetics ; Evolution ; Evolution, Molecular ; Evolutionary Biology ; Evolutionary genetics ; Genetics ; Genome Size ; Genomes ; Genomics ; Humans ; Insertion ; Introns ; Life Sciences ; Microbiology ; Models, Genetic ; molecular evolution ; Mutagenesis ; Mutation ; Mutation Rate ; Mutation rates ; Plant Genetics and Genomics ; Plant Sciences ; Selection, Genetic - genetics ; Spacer</subject><ispartof>Journal of molecular evolution, 2011-12, Vol.73 (5-6), p.337-354</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media, LLC 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-2c7f62a51055b5e542764444cc6b26274afde00453eaa57ac39962b1a03c7f753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00239-011-9482-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00239-011-9482-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22212997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ananko, Grigory G.</creatorcontrib><title>A Model of Genetic Search for Beneficial Mutations: Estimating the Constructive Capacities of Mutagenesis</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>We attempted to answer the following question: What evolutionary conditions are required to generate novel genetic modules? Our broad formulation of the problem allows us to simultaneously consider such issues as the relationship between the stage of “genetic search” and the rate of adaptive evolution; the theoretical limits to the generative capacities of spontaneous mutagenesis; and the correlation between genome organization and evolvability. We show that adaptive evolution is feasible only when the mutation rate is fine-tuned to a specific range of values and the structures of the genome and genes are optimized in a certain way. Our quantitative analysis has demonstrated that the rate of evolution of novelty depends on several parameters, such as genome size, the length of a module, the size of the adjacent nonfunctional DNA spacers, and the mutation rate at various genomic scales. We evaluated the efficiency of some mechanisms that increase evolvability: bias in the spectrum of mutation rates towards small mutations, and the availability and size of nonfunctional DNA spacers. We show that the probability of successful duplication and insertion of a copy of a functional module increases by several orders of magnitude depending on the length of the spacers flanking the module. We infer that the adaptive evolution of multicellular organisms has become feasible because of the abundance of nonfunctional DNA spacers, particularly introns, in the genome. We also discuss possible reasons underlying evolutionary retention of the mechanisms that increase evolvability.</description><subject>Abundance</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Intergenic - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Evolutionary genetics</subject><subject>Genetics</subject><subject>Genome Size</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Insertion</subject><subject>Introns</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Models, Genetic</subject><subject>molecular evolution</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>Mutation rates</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Selection, Genetic - genetics</subject><subject>Spacer</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtLAzEUhYMotlZ_gBsJblyN5jlp3NVSq2Bxoa5DmmbalOlMTTKC_fVmmKogmEXCvfnOyeMAcI7RNUZI3ASECJUZwjiTbEiy3QHoY0ZJ1k6HoJ-2SUaGjPXASQhrhLDgkh6DHiEEEylFH7gRnNULW8K6gFNb2egMfLHamxUsag_vUqtwxukSzpqoo6urcAsnIbpNKqoljCsLx6kZfWOi-0iF3mrjorOhtWxFy-QRXDgFR4Uugz3brwPwdj95HT9kT8_Tx_HoKTOUs5gRI4qcaI4R53NuOSMiZ2kYk89JTgTTxcIixDi1WnOhDZUyJ3OsEU1KwekAXHW-W1-_NzZEtXHB2LLUla2boCRnOaOSteTlH3JdN75Kl1MSD0XOBWIJwh1kfB2Ct4Xa-vR4_6kwUm0KqktBpRRUm4LaJc3F3riZb-ziR_H97QkgHRDSVrW0_vfk_12_ANIJkg4</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Ananko, Grigory G.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20111201</creationdate><title>A Model of Genetic Search for Beneficial Mutations: Estimating the Constructive Capacities of Mutagenesis</title><author>Ananko, Grigory G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-2c7f62a51055b5e542764444cc6b26274afde00453eaa57ac39962b1a03c7f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abundance</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Intergenic - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Evolutionary genetics</topic><topic>Genetics</topic><topic>Genome Size</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Insertion</topic><topic>Introns</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Models, Genetic</topic><topic>molecular evolution</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>Mutation rates</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Selection, Genetic - genetics</topic><topic>Spacer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ananko, Grigory G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ananko, Grigory G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model of Genetic Search for Beneficial Mutations: Estimating the Constructive Capacities of Mutagenesis</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>73</volume><issue>5-6</issue><spage>337</spage><epage>354</epage><pages>337-354</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>We attempted to answer the following question: What evolutionary conditions are required to generate novel genetic modules? Our broad formulation of the problem allows us to simultaneously consider such issues as the relationship between the stage of “genetic search” and the rate of adaptive evolution; the theoretical limits to the generative capacities of spontaneous mutagenesis; and the correlation between genome organization and evolvability. We show that adaptive evolution is feasible only when the mutation rate is fine-tuned to a specific range of values and the structures of the genome and genes are optimized in a certain way. Our quantitative analysis has demonstrated that the rate of evolution of novelty depends on several parameters, such as genome size, the length of a module, the size of the adjacent nonfunctional DNA spacers, and the mutation rate at various genomic scales. We evaluated the efficiency of some mechanisms that increase evolvability: bias in the spectrum of mutation rates towards small mutations, and the availability and size of nonfunctional DNA spacers. We show that the probability of successful duplication and insertion of a copy of a functional module increases by several orders of magnitude depending on the length of the spacers flanking the module. We infer that the adaptive evolution of multicellular organisms has become feasible because of the abundance of nonfunctional DNA spacers, particularly introns, in the genome. We also discuss possible reasons underlying evolutionary retention of the mechanisms that increase evolvability.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22212997</pmid><doi>10.1007/s00239-011-9482-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2844 |
ispartof | Journal of molecular evolution, 2011-12, Vol.73 (5-6), p.337-354 |
issn | 0022-2844 1432-1432 |
language | eng |
recordid | cdi_proquest_miscellaneous_954643945 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Abundance Animal Genetics and Genomics Biomedical and Life Sciences Cell Biology Deoxyribonucleic acid DNA DNA, Intergenic - genetics Escherichia coli - genetics Evolution Evolution, Molecular Evolutionary Biology Evolutionary genetics Genetics Genome Size Genomes Genomics Humans Insertion Introns Life Sciences Microbiology Models, Genetic molecular evolution Mutagenesis Mutation Mutation Rate Mutation rates Plant Genetics and Genomics Plant Sciences Selection, Genetic - genetics Spacer |
title | A Model of Genetic Search for Beneficial Mutations: Estimating the Constructive Capacities of Mutagenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20of%20Genetic%20Search%20for%20Beneficial%20Mutations:%20Estimating%20the%20Constructive%20Capacities%20of%20Mutagenesis&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Ananko,%20Grigory%20G.&rft.date=2011-12-01&rft.volume=73&rft.issue=5-6&rft.spage=337&rft.epage=354&rft.pages=337-354&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-011-9482-z&rft_dat=%3Cproquest_cross%3E2574420881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918765704&rft_id=info:pmid/22212997&rfr_iscdi=true |