An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure
Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow contro...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2012-02, Vol.14 (1), p.235-245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 1 |
container_start_page | 235 |
container_title | Biomedical microdevices |
container_volume | 14 |
creator | Zhou, Ming-Da Yang, Chuan Liu, Zhiwen Cysyk, Joshua P. Zheng, Si-Yang |
description | Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing. |
doi_str_mv | 10.1007/s10544-011-9601-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954641045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>924961596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</originalsourceid><addsrcrecordid>eNqNkdFqFTEQhoMotlYfwBsJ3ngVm8km2c1lKa0KBXuh1yG7mege9uweM9lC-0Y-hy_WHE5VEITeTIbM9__D8DP2GuR7kLI9JZBGayEBhLMSxN0TdgymVaJrO3ha-6ZrhYLWHrEXRBspwVlrn7MjBc612rljtjmb-bjdTWEuoZ-QX4Y-34rrXz_zUvguI9GakRPOtGSe6nAcQsHIl5lPmAq_wbnUv3UKmQeikQqPeDMOyFMVfMeQS5WNU3V5yZ6lMBG-enhP2NfLiy_nH8XV5w-fzs-uxKClKgIaafum62rpbRxCMjp0vQEdY1S2ccaEZDGqPvZokpWpcyZicq3SFrQ0zQl7d_Dd5eXHilT8dqQBp3ojLit5Z7TVIPUjSKWdBeNsJd_-Q26WNc_1jAo1rVKN2dvBARryQpQx-V0etyHfepB-H5g_BOZrYH4fmL-rmjcPxmu_xfhH8TuhCqgDQHU0f8P8d_P_Xe8BkVOiog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923722355</pqid></control><display><type>article</type><title>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Ming-Da ; Yang, Chuan ; Liu, Zhiwen ; Cysyk, Joshua P. ; Zheng, Si-Yang</creator><creatorcontrib>Zhou, Ming-Da ; Yang, Chuan ; Liu, Zhiwen ; Cysyk, Joshua P. ; Zheng, Si-Yang</creatorcontrib><description>Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-011-9601-z</identifier><identifier>PMID: 21997499</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Engineering ; Engineering Fluid Dynamics ; Heart Failure - therapy ; Heart-Assist Devices ; Humans ; Nanotechnology ; Pressure</subject><ispartof>Biomedical microdevices, 2012-02, Vol.14 (1), p.235-245</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</citedby><cites>FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-011-9601-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-011-9601-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21997499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ming-Da</creatorcontrib><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cysyk, Joshua P.</creatorcontrib><creatorcontrib>Zheng, Si-Yang</creatorcontrib><title>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Heart Failure - therapy</subject><subject>Heart-Assist Devices</subject><subject>Humans</subject><subject>Nanotechnology</subject><subject>Pressure</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkdFqFTEQhoMotlYfwBsJ3ngVm8km2c1lKa0KBXuh1yG7mege9uweM9lC-0Y-hy_WHE5VEITeTIbM9__D8DP2GuR7kLI9JZBGayEBhLMSxN0TdgymVaJrO3ha-6ZrhYLWHrEXRBspwVlrn7MjBc612rljtjmb-bjdTWEuoZ-QX4Y-34rrXz_zUvguI9GakRPOtGSe6nAcQsHIl5lPmAq_wbnUv3UKmQeikQqPeDMOyFMVfMeQS5WNU3V5yZ6lMBG-enhP2NfLiy_nH8XV5w-fzs-uxKClKgIaafum62rpbRxCMjp0vQEdY1S2ccaEZDGqPvZokpWpcyZicq3SFrQ0zQl7d_Dd5eXHilT8dqQBp3ojLit5Z7TVIPUjSKWdBeNsJd_-Q26WNc_1jAo1rVKN2dvBARryQpQx-V0etyHfepB-H5g_BOZrYH4fmL-rmjcPxmu_xfhH8TuhCqgDQHU0f8P8d_P_Xe8BkVOiog</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Zhou, Ming-Da</creator><creator>Yang, Chuan</creator><creator>Liu, Zhiwen</creator><creator>Cysyk, Joshua P.</creator><creator>Zheng, Si-Yang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</title><author>Zhou, Ming-Da ; Yang, Chuan ; Liu, Zhiwen ; Cysyk, Joshua P. ; Zheng, Si-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Heart Failure - therapy</topic><topic>Heart-Assist Devices</topic><topic>Humans</topic><topic>Nanotechnology</topic><topic>Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming-Da</creatorcontrib><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cysyk, Joshua P.</creatorcontrib><creatorcontrib>Zheng, Si-Yang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming-Da</au><au>Yang, Chuan</au><au>Liu, Zhiwen</au><au>Cysyk, Joshua P.</au><au>Zheng, Si-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>14</volume><issue>1</issue><spage>235</spage><epage>245</epage><pages>235-245</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21997499</pmid><doi>10.1007/s10544-011-9601-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2012-02, Vol.14 (1), p.235-245 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_proquest_miscellaneous_954641045 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Engineering Engineering Fluid Dynamics Heart Failure - therapy Heart-Assist Devices Humans Nanotechnology Pressure |
title | An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implantable%20Fabry-P%C3%A9rot%20pressure%20sensor%20fabricated%20on%20left%20ventricular%20assist%20device%20for%20heart%20failure&rft.jtitle=Biomedical%20microdevices&rft.au=Zhou,%20Ming-Da&rft.date=2012-02-01&rft.volume=14&rft.issue=1&rft.spage=235&rft.epage=245&rft.pages=235-245&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-011-9601-z&rft_dat=%3Cproquest_cross%3E924961596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923722355&rft_id=info:pmid/21997499&rfr_iscdi=true |