An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure

Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2012-02, Vol.14 (1), p.235-245
Hauptverfasser: Zhou, Ming-Da, Yang, Chuan, Liu, Zhiwen, Cysyk, Joshua P., Zheng, Si-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 1
container_start_page 235
container_title Biomedical microdevices
container_volume 14
creator Zhou, Ming-Da
Yang, Chuan
Liu, Zhiwen
Cysyk, Joshua P.
Zheng, Si-Yang
description Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.
doi_str_mv 10.1007/s10544-011-9601-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954641045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>924961596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</originalsourceid><addsrcrecordid>eNqNkdFqFTEQhoMotlYfwBsJ3ngVm8km2c1lKa0KBXuh1yG7mege9uweM9lC-0Y-hy_WHE5VEITeTIbM9__D8DP2GuR7kLI9JZBGayEBhLMSxN0TdgymVaJrO3ha-6ZrhYLWHrEXRBspwVlrn7MjBc612rljtjmb-bjdTWEuoZ-QX4Y-34rrXz_zUvguI9GakRPOtGSe6nAcQsHIl5lPmAq_wbnUv3UKmQeikQqPeDMOyFMVfMeQS5WNU3V5yZ6lMBG-enhP2NfLiy_nH8XV5w-fzs-uxKClKgIaafum62rpbRxCMjp0vQEdY1S2ccaEZDGqPvZokpWpcyZicq3SFrQ0zQl7d_Dd5eXHilT8dqQBp3ojLit5Z7TVIPUjSKWdBeNsJd_-Q26WNc_1jAo1rVKN2dvBARryQpQx-V0etyHfepB-H5g_BOZrYH4fmL-rmjcPxmu_xfhH8TuhCqgDQHU0f8P8d_P_Xe8BkVOiog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923722355</pqid></control><display><type>article</type><title>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Ming-Da ; Yang, Chuan ; Liu, Zhiwen ; Cysyk, Joshua P. ; Zheng, Si-Yang</creator><creatorcontrib>Zhou, Ming-Da ; Yang, Chuan ; Liu, Zhiwen ; Cysyk, Joshua P. ; Zheng, Si-Yang</creatorcontrib><description>Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-011-9601-z</identifier><identifier>PMID: 21997499</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Engineering ; Engineering Fluid Dynamics ; Heart Failure - therapy ; Heart-Assist Devices ; Humans ; Nanotechnology ; Pressure</subject><ispartof>Biomedical microdevices, 2012-02, Vol.14 (1), p.235-245</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</citedby><cites>FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-011-9601-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-011-9601-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21997499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Ming-Da</creatorcontrib><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cysyk, Joshua P.</creatorcontrib><creatorcontrib>Zheng, Si-Yang</creatorcontrib><title>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Heart Failure - therapy</subject><subject>Heart-Assist Devices</subject><subject>Humans</subject><subject>Nanotechnology</subject><subject>Pressure</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkdFqFTEQhoMotlYfwBsJ3ngVm8km2c1lKa0KBXuh1yG7mege9uweM9lC-0Y-hy_WHE5VEITeTIbM9__D8DP2GuR7kLI9JZBGayEBhLMSxN0TdgymVaJrO3ha-6ZrhYLWHrEXRBspwVlrn7MjBc612rljtjmb-bjdTWEuoZ-QX4Y-34rrXz_zUvguI9GakRPOtGSe6nAcQsHIl5lPmAq_wbnUv3UKmQeikQqPeDMOyFMVfMeQS5WNU3V5yZ6lMBG-enhP2NfLiy_nH8XV5w-fzs-uxKClKgIaafum62rpbRxCMjp0vQEdY1S2ccaEZDGqPvZokpWpcyZicq3SFrQ0zQl7d_Dd5eXHilT8dqQBp3ojLit5Z7TVIPUjSKWdBeNsJd_-Q26WNc_1jAo1rVKN2dvBARryQpQx-V0etyHfepB-H5g_BOZrYH4fmL-rmjcPxmu_xfhH8TuhCqgDQHU0f8P8d_P_Xe8BkVOiog</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Zhou, Ming-Da</creator><creator>Yang, Chuan</creator><creator>Liu, Zhiwen</creator><creator>Cysyk, Joshua P.</creator><creator>Zheng, Si-Yang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</title><author>Zhou, Ming-Da ; Yang, Chuan ; Liu, Zhiwen ; Cysyk, Joshua P. ; Zheng, Si-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1306b3886b3b6dcaf54a8b514ddd263955af6ed2bdbe5f60f895def9724614053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Heart Failure - therapy</topic><topic>Heart-Assist Devices</topic><topic>Humans</topic><topic>Nanotechnology</topic><topic>Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming-Da</creatorcontrib><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Liu, Zhiwen</creatorcontrib><creatorcontrib>Cysyk, Joshua P.</creatorcontrib><creatorcontrib>Zheng, Si-Yang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming-Da</au><au>Yang, Chuan</au><au>Liu, Zhiwen</au><au>Cysyk, Joshua P.</au><au>Zheng, Si-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>14</volume><issue>1</issue><spage>235</spage><epage>245</epage><pages>235-245</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>21997499</pmid><doi>10.1007/s10544-011-9601-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2012-02, Vol.14 (1), p.235-245
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_954641045
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Engineering
Engineering Fluid Dynamics
Heart Failure - therapy
Heart-Assist Devices
Humans
Nanotechnology
Pressure
title An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T08%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implantable%20Fabry-P%C3%A9rot%20pressure%20sensor%20fabricated%20on%20left%20ventricular%20assist%20device%20for%20heart%20failure&rft.jtitle=Biomedical%20microdevices&rft.au=Zhou,%20Ming-Da&rft.date=2012-02-01&rft.volume=14&rft.issue=1&rft.spage=235&rft.epage=245&rft.pages=235-245&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-011-9601-z&rft_dat=%3Cproquest_cross%3E924961596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923722355&rft_id=info:pmid/21997499&rfr_iscdi=true