Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease
The basal ganglia have a local renin–angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Rec...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2010-11, Vol.32 (10), p.1695-1706 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1706 |
---|---|
container_issue | 10 |
container_start_page | 1695 |
container_title | The European journal of neuroscience |
container_volume | 32 |
creator | Villar-Cheda, Begoña Rodríguez-Pallares, Jannette Valenzuela, Rita Muñoz, Ana Guerra, Maria J. Baltatu, Ovidiu C. Labandeira-Garcia, Jose L. |
description | The basal ganglia have a local renin–angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of counter‐regulatory interactions between dopamine and AII receptors in non‐neural cells such as renal proximal tubule cells. However, it is not known if this occurs in the basal ganglia. In the striatum and nigra, depletion of dopamine with reserpine induced a significant increase in the expression of AT1, angiotensin type 2 receptors (AT2) and the NADPH subunit p47phox, which decreased as dopamine function was restored. Similarly, 6‐hydroxydopamine‐induced chronic dopaminergic denervation induced a significant increase in expression of AT1, AT2 and p47phox, which decreased with L‐dopa administration. A significant reduction in expression of AT1 mRNA was also observed after administration of dopamine to cultures of microglial cells. Transgenic rats with very low levels of brain AII showed increased AT1, decreased p47 phox and no changes in AT2 expression, whereas mice deficient in AT1 exhibited a decrease in the expression of p47 phox and AT2. The administration of relatively high doses of AII (100 nm) decreased the expression of AT1, and the increased expression of AT2 and p47phox in primary mesencephalic cultures. The results reveal an important interaction between the dopaminergic and local renin–angiotensin system in the basal ganglia, which may be a major factor in the progression of Parkinson’s disease. |
doi_str_mv | 10.1111/j.1460-9568.2010.07448.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954611840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787045886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-11f15b76af9fca5b12e133d01a7d7f84800404f9930fe6d4c26790d110f4b83a3</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhi0EYsrAK6DsZpVyHDu2g8QChmEAjcosymVnOclx5ZLGGTsV7cPwrjjtTMUOvPHlvxxLHyEZhTlN69V6TrmAvCqFmheQXkFyrua7R2R2Eh6TGVQlyxUVP87IsxjXAKAEL5-SswIqwSWDGfm9cKtgusz0bRbH4MyYLgFX286MzveZt0laOT9iH12flAaH0YcMd0PAGCdLvc9aP5iN6_FQ87d_ivgW-zG-ztxm6FxzqI2ZTR1D8KuHkjTn1oSfro--v4hZ6yKaiM_JE2u6iC_u93Py9cPV8vJjfvPl-tPl25u84UypnFJLy1oKYyvbmLKmBVLGWqBGttIqrgA4cFtVDCyKljeFkBW0lILltWKGnZOLY2_60t0W46g3LjbYdaZHv426KrmgVHH4p1MqCbxUSiSnOjqb4GMMaPUQ3MaEvaagJ4p6rSdYeoKlJ4r6QFHvUvTl_ZBtvcH2FHzAlgxvjoZfrsP9fxfrq8-L6ZTy-THv4oi7Uz4B0EIyWervi2tdvP_2DujyVi_ZH87TvhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787045886</pqid></control><display><type>article</type><title>Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Villar-Cheda, Begoña ; Rodríguez-Pallares, Jannette ; Valenzuela, Rita ; Muñoz, Ana ; Guerra, Maria J. ; Baltatu, Ovidiu C. ; Labandeira-Garcia, Jose L.</creator><creatorcontrib>Villar-Cheda, Begoña ; Rodríguez-Pallares, Jannette ; Valenzuela, Rita ; Muñoz, Ana ; Guerra, Maria J. ; Baltatu, Ovidiu C. ; Labandeira-Garcia, Jose L.</creatorcontrib><description>The basal ganglia have a local renin–angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of counter‐regulatory interactions between dopamine and AII receptors in non‐neural cells such as renal proximal tubule cells. However, it is not known if this occurs in the basal ganglia. In the striatum and nigra, depletion of dopamine with reserpine induced a significant increase in the expression of AT1, angiotensin type 2 receptors (AT2) and the NADPH subunit p47phox, which decreased as dopamine function was restored. Similarly, 6‐hydroxydopamine‐induced chronic dopaminergic denervation induced a significant increase in expression of AT1, AT2 and p47phox, which decreased with L‐dopa administration. A significant reduction in expression of AT1 mRNA was also observed after administration of dopamine to cultures of microglial cells. Transgenic rats with very low levels of brain AII showed increased AT1, decreased p47 phox and no changes in AT2 expression, whereas mice deficient in AT1 exhibited a decrease in the expression of p47 phox and AT2. The administration of relatively high doses of AII (100 nm) decreased the expression of AT1, and the increased expression of AT2 and p47phox in primary mesencephalic cultures. The results reveal an important interaction between the dopaminergic and local renin–angiotensin system in the basal ganglia, which may be a major factor in the progression of Parkinson’s disease.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2010.07448.x</identifier><identifier>PMID: 20964730</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adrenergic Uptake Inhibitors - metabolism ; angiotensin ; Angiotensin II - metabolism ; Animals ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Disease Progression ; dopamine ; Dopamine - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; neuroinflammation ; neuroprotection ; Parkinson Disease - physiopathology ; Parkinson's disease ; Rats ; Rats, Sprague-Dawley ; Rats, Transgenic ; Receptor, Angiotensin, Type 1 - genetics ; Receptor, Angiotensin, Type 1 - metabolism ; Receptor, Angiotensin, Type 2 - genetics ; Receptor, Angiotensin, Type 2 - metabolism ; Renin-Angiotensin System - physiology ; Reserpine - metabolism ; Substantia Nigra - cytology ; Substantia Nigra - metabolism</subject><ispartof>The European journal of neuroscience, 2010-11, Vol.32 (10), p.1695-1706</ispartof><rights>2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd</rights><rights>2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-11f15b76af9fca5b12e133d01a7d7f84800404f9930fe6d4c26790d110f4b83a3</citedby><cites>FETCH-LOGICAL-c4388-11f15b76af9fca5b12e133d01a7d7f84800404f9930fe6d4c26790d110f4b83a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2010.07448.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2010.07448.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20964730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villar-Cheda, Begoña</creatorcontrib><creatorcontrib>Rodríguez-Pallares, Jannette</creatorcontrib><creatorcontrib>Valenzuela, Rita</creatorcontrib><creatorcontrib>Muñoz, Ana</creatorcontrib><creatorcontrib>Guerra, Maria J.</creatorcontrib><creatorcontrib>Baltatu, Ovidiu C.</creatorcontrib><creatorcontrib>Labandeira-Garcia, Jose L.</creatorcontrib><title>Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>The basal ganglia have a local renin–angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of counter‐regulatory interactions between dopamine and AII receptors in non‐neural cells such as renal proximal tubule cells. However, it is not known if this occurs in the basal ganglia. In the striatum and nigra, depletion of dopamine with reserpine induced a significant increase in the expression of AT1, angiotensin type 2 receptors (AT2) and the NADPH subunit p47phox, which decreased as dopamine function was restored. Similarly, 6‐hydroxydopamine‐induced chronic dopaminergic denervation induced a significant increase in expression of AT1, AT2 and p47phox, which decreased with L‐dopa administration. A significant reduction in expression of AT1 mRNA was also observed after administration of dopamine to cultures of microglial cells. Transgenic rats with very low levels of brain AII showed increased AT1, decreased p47 phox and no changes in AT2 expression, whereas mice deficient in AT1 exhibited a decrease in the expression of p47 phox and AT2. The administration of relatively high doses of AII (100 nm) decreased the expression of AT1, and the increased expression of AT2 and p47phox in primary mesencephalic cultures. The results reveal an important interaction between the dopaminergic and local renin–angiotensin system in the basal ganglia, which may be a major factor in the progression of Parkinson’s disease.</description><subject>Adrenergic Uptake Inhibitors - metabolism</subject><subject>angiotensin</subject><subject>Angiotensin II - metabolism</subject><subject>Animals</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Disease Progression</subject><subject>dopamine</subject><subject>Dopamine - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>neuroinflammation</subject><subject>neuroprotection</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Transgenic</subject><subject>Receptor, Angiotensin, Type 1 - genetics</subject><subject>Receptor, Angiotensin, Type 1 - metabolism</subject><subject>Receptor, Angiotensin, Type 2 - genetics</subject><subject>Receptor, Angiotensin, Type 2 - metabolism</subject><subject>Renin-Angiotensin System - physiology</subject><subject>Reserpine - metabolism</subject><subject>Substantia Nigra - cytology</subject><subject>Substantia Nigra - metabolism</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO0zAUhi0EYsrAK6DsZpVyHDu2g8QChmEAjcosymVnOclx5ZLGGTsV7cPwrjjtTMUOvPHlvxxLHyEZhTlN69V6TrmAvCqFmheQXkFyrua7R2R2Eh6TGVQlyxUVP87IsxjXAKAEL5-SswIqwSWDGfm9cKtgusz0bRbH4MyYLgFX286MzveZt0laOT9iH12flAaH0YcMd0PAGCdLvc9aP5iN6_FQ87d_ivgW-zG-ztxm6FxzqI2ZTR1D8KuHkjTn1oSfro--v4hZ6yKaiM_JE2u6iC_u93Py9cPV8vJjfvPl-tPl25u84UypnFJLy1oKYyvbmLKmBVLGWqBGttIqrgA4cFtVDCyKljeFkBW0lILltWKGnZOLY2_60t0W46g3LjbYdaZHv426KrmgVHH4p1MqCbxUSiSnOjqb4GMMaPUQ3MaEvaagJ4p6rSdYeoKlJ4r6QFHvUvTl_ZBtvcH2FHzAlgxvjoZfrsP9fxfrq8-L6ZTy-THv4oi7Uz4B0EIyWervi2tdvP_2DujyVi_ZH87TvhA</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Villar-Cheda, Begoña</creator><creator>Rodríguez-Pallares, Jannette</creator><creator>Valenzuela, Rita</creator><creator>Muñoz, Ana</creator><creator>Guerra, Maria J.</creator><creator>Baltatu, Ovidiu C.</creator><creator>Labandeira-Garcia, Jose L.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>201011</creationdate><title>Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease</title><author>Villar-Cheda, Begoña ; Rodríguez-Pallares, Jannette ; Valenzuela, Rita ; Muñoz, Ana ; Guerra, Maria J. ; Baltatu, Ovidiu C. ; Labandeira-Garcia, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-11f15b76af9fca5b12e133d01a7d7f84800404f9930fe6d4c26790d110f4b83a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adrenergic Uptake Inhibitors - metabolism</topic><topic>angiotensin</topic><topic>Angiotensin II - metabolism</topic><topic>Animals</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Disease Progression</topic><topic>dopamine</topic><topic>Dopamine - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>neuroinflammation</topic><topic>neuroprotection</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Transgenic</topic><topic>Receptor, Angiotensin, Type 1 - genetics</topic><topic>Receptor, Angiotensin, Type 1 - metabolism</topic><topic>Receptor, Angiotensin, Type 2 - genetics</topic><topic>Receptor, Angiotensin, Type 2 - metabolism</topic><topic>Renin-Angiotensin System - physiology</topic><topic>Reserpine - metabolism</topic><topic>Substantia Nigra - cytology</topic><topic>Substantia Nigra - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villar-Cheda, Begoña</creatorcontrib><creatorcontrib>Rodríguez-Pallares, Jannette</creatorcontrib><creatorcontrib>Valenzuela, Rita</creatorcontrib><creatorcontrib>Muñoz, Ana</creatorcontrib><creatorcontrib>Guerra, Maria J.</creatorcontrib><creatorcontrib>Baltatu, Ovidiu C.</creatorcontrib><creatorcontrib>Labandeira-Garcia, Jose L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villar-Cheda, Begoña</au><au>Rodríguez-Pallares, Jannette</au><au>Valenzuela, Rita</au><au>Muñoz, Ana</au><au>Guerra, Maria J.</au><au>Baltatu, Ovidiu C.</au><au>Labandeira-Garcia, Jose L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2010-11</date><risdate>2010</risdate><volume>32</volume><issue>10</issue><spage>1695</spage><epage>1706</epage><pages>1695-1706</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>The basal ganglia have a local renin–angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of counter‐regulatory interactions between dopamine and AII receptors in non‐neural cells such as renal proximal tubule cells. However, it is not known if this occurs in the basal ganglia. In the striatum and nigra, depletion of dopamine with reserpine induced a significant increase in the expression of AT1, angiotensin type 2 receptors (AT2) and the NADPH subunit p47phox, which decreased as dopamine function was restored. Similarly, 6‐hydroxydopamine‐induced chronic dopaminergic denervation induced a significant increase in expression of AT1, AT2 and p47phox, which decreased with L‐dopa administration. A significant reduction in expression of AT1 mRNA was also observed after administration of dopamine to cultures of microglial cells. Transgenic rats with very low levels of brain AII showed increased AT1, decreased p47 phox and no changes in AT2 expression, whereas mice deficient in AT1 exhibited a decrease in the expression of p47 phox and AT2. The administration of relatively high doses of AII (100 nm) decreased the expression of AT1, and the increased expression of AT2 and p47phox in primary mesencephalic cultures. The results reveal an important interaction between the dopaminergic and local renin–angiotensin system in the basal ganglia, which may be a major factor in the progression of Parkinson’s disease.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20964730</pmid><doi>10.1111/j.1460-9568.2010.07448.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2010-11, Vol.32 (10), p.1695-1706 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_954611840 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adrenergic Uptake Inhibitors - metabolism angiotensin Angiotensin II - metabolism Animals Corpus Striatum - cytology Corpus Striatum - metabolism Disease Progression dopamine Dopamine - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout NADPH Oxidases - genetics NADPH Oxidases - metabolism neuroinflammation neuroprotection Parkinson Disease - physiopathology Parkinson's disease Rats Rats, Sprague-Dawley Rats, Transgenic Receptor, Angiotensin, Type 1 - genetics Receptor, Angiotensin, Type 1 - metabolism Receptor, Angiotensin, Type 2 - genetics Receptor, Angiotensin, Type 2 - metabolism Renin-Angiotensin System - physiology Reserpine - metabolism Substantia Nigra - cytology Substantia Nigra - metabolism |
title | Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nigral%20and%20striatal%20regulation%20of%20angiotensin%20receptor%20expression%20by%20dopamine%20and%20angiotensin%20in%20rodents:%20implications%20for%20progression%20of%20Parkinson's%20disease&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Villar-Cheda,%20Bego%C3%B1a&rft.date=2010-11&rft.volume=32&rft.issue=10&rft.spage=1695&rft.epage=1706&rft.pages=1695-1706&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2010.07448.x&rft_dat=%3Cproquest_cross%3E787045886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787045886&rft_id=info:pmid/20964730&rfr_iscdi=true |