Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression

Objective Myocardial infarction leads to contractile dysfunction. In patients with diabetes, impaired contractility has been associated with the loss of insulin effects and mitochondrial dysfunction. We assessed cardiac insulin sensitivity and mitochondrial and contractile function in rats after lig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of thoracic and cardiovascular surgery 2010-11, Vol.140 (5), p.1160-1167
Hauptverfasser: Amorim, Paulo A., MD, Nguyen, T. Dung, BS, Shingu, Yasushige, MD, Schwarzer, Michael, PhD, Mohr, Friedrich W., MD, PhD, Schrepper, Andrea, MS, Doenst, Torsten, MD, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 5
container_start_page 1160
container_title The Journal of thoracic and cardiovascular surgery
container_volume 140
creator Amorim, Paulo A., MD
Nguyen, T. Dung, BS
Shingu, Yasushige, MD
Schwarzer, Michael, PhD
Mohr, Friedrich W., MD, PhD
Schrepper, Andrea, MS
Doenst, Torsten, MD, PhD
description Objective Myocardial infarction leads to contractile dysfunction. In patients with diabetes, impaired contractility has been associated with the loss of insulin effects and mitochondrial dysfunction. We assessed cardiac insulin sensitivity and mitochondrial and contractile function in rats after ligation of the left coronary artery. Methods At 2 weeks after left coronary artery ligation, we performed echocardiography in vivo and assessed the substrate use and insulin response in the isolated working heart and the regulation of insulin (Akt, glucose transporter type 4) and mitochondrial signaling (p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A) using polymerase chain reaction and Western blotting. Results The infarcted hearts were dilated and had a reduced ejection fraction (ejection fraction 
doi_str_mv 10.1016/j.jtcvs.2010.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954601756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S002252231000869X</els_id><sourcerecordid>759130472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-1d94d2957591b53af5c0f3245bbad05325444536eaa81af3d7c5a270e218e6ac3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEokPhCZBQdqxmem3H-VmAhKoClYpYAFJ31h37hnpI7GA7pfMqPC3OTGHBpiv_ffdc65xbFC8ZbBiw-my32SV9Gzcc8g20GwDxqFgx6Jp13crrx8UKgPO15FycFM9i3AFAA6x7WpxwaCW0IFbF7097rzEYi0NpXY9BJ-td3pYBUyw1zpFiOWFIB2Kc0IaRXFoI6-I8LCTFybtIJcbotcVEpvxl001-MLPOhx5T2peorSn9nTV4aIHOlKNNXt94Z8Ki_p0clXQ3Zb2YiefFkx6HSC_u19Pi2_uLr-cf11efP1yev7ta66qDtGamqwzvZCM7tpUCe6mhF7yS2y0akILLqqqkqAmxZdgL02iJvAHirKUatTgtXh91p-B_zhSTGm3UNAzoyM9RdbKqgTWyfpBcviCgangmxZHUwccYqFdTsCOGvWKglvTUTh3SU0t6ClqV08tVr-715-1I5l_N37gy8OYIUPbj1lJQUVty2WMbSCdlvH2gwdv_6nUO0GocftCe4s7PwWWrFVORK1BflgFa5ofl0Wnr7lr8ARc3xTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759130472</pqid></control><display><type>article</type><title>Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Amorim, Paulo A., MD ; Nguyen, T. Dung, BS ; Shingu, Yasushige, MD ; Schwarzer, Michael, PhD ; Mohr, Friedrich W., MD, PhD ; Schrepper, Andrea, MS ; Doenst, Torsten, MD, PhD</creator><creatorcontrib>Amorim, Paulo A., MD ; Nguyen, T. Dung, BS ; Shingu, Yasushige, MD ; Schwarzer, Michael, PhD ; Mohr, Friedrich W., MD, PhD ; Schrepper, Andrea, MS ; Doenst, Torsten, MD, PhD</creatorcontrib><description>Objective Myocardial infarction leads to contractile dysfunction. In patients with diabetes, impaired contractility has been associated with the loss of insulin effects and mitochondrial dysfunction. We assessed cardiac insulin sensitivity and mitochondrial and contractile function in rats after ligation of the left coronary artery. Methods At 2 weeks after left coronary artery ligation, we performed echocardiography in vivo and assessed the substrate use and insulin response in the isolated working heart and the regulation of insulin (Akt, glucose transporter type 4) and mitochondrial signaling (p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A) using polymerase chain reaction and Western blotting. Results The infarcted hearts were dilated and had a reduced ejection fraction (ejection fraction &lt; 50%). The basal glucose oxidation was preserved, but the fatty acid oxidation was significantly reduced. Insulin’s effect on substrate oxidation was significantly impaired for both the decrease in fatty acid oxidation and the increase in glucose oxidation. However, insulin-stimulated glucose uptake was normal in the infarcted hearts, consistent with normal insulin-induced phosphorylation of Akt and unchanged mRNA expression of glucose transporter type 4. The impaired oxidative response to insulin was associated with reduced mRNA expression of the genes regulating fatty acid oxidation (long-chain-acyl-coenzyme A dehydrogenase, carnitine palmitoyltransferase 1, peroxisome proliferator-activated receptor-α) and mitochondrial biogenesis (mitochondrial transcription factor A). Although mRNA expression of the mitochondrial master regulator peroxisome proliferator-activated receptor-γ coactivator 1α was normal in the infarcted hearts, the protein expression of its post-transcriptional activator, p38 mitogen-activated protein kinase, was significantly reduced. Conclusions Myocardial infarction in rats caused partial insulin resistance at the level of substrate oxidation, which was associated with mitochondrial and cardiac contractile dysfunction. Mitochondrial dysfunction was characterized by a reduced capacity to oxidize fatty acids and might have resulted from impaired mitochondrial biogenesis through the lack of p38 mitogen-activated protein kinase.</description><identifier>ISSN: 0022-5223</identifier><identifier>EISSN: 1097-685X</identifier><identifier>DOI: 10.1016/j.jtcvs.2010.08.003</identifier><identifier>PMID: 20850803</identifier><language>eng</language><publisher>United States: Mosby, Inc</publisher><subject>Acyl-CoA Dehydrogenase, Long-Chain - genetics ; Animals ; Blood Glucose - metabolism ; Cardiothoracic Surgery ; Carnitine O-Palmitoyltransferase - genetics ; Disease Models, Animal ; Fatty Acids - metabolism ; Gene Expression Regulation ; Glucose Transporter Type 4 - genetics ; Glucose Transporter Type 4 - metabolism ; Insulin - metabolism ; Insulin Resistance - genetics ; Male ; Mitochondria, Heart - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Myocardial Contraction - genetics ; Myocardial Infarction - diagnostic imaging ; Myocardial Infarction - genetics ; Myocardial Infarction - metabolism ; Myocardial Infarction - physiopathology ; Myocardium - metabolism ; Oxidation-Reduction ; p38 Mitogen-Activated Protein Kinases - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Phosphorylation ; PPAR alpha - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - metabolism ; RNA-Binding Proteins - genetics ; Time Factors ; Transcription Factors - genetics ; Ultrasonography</subject><ispartof>The Journal of thoracic and cardiovascular surgery, 2010-11, Vol.140 (5), p.1160-1167</ispartof><rights>2010</rights><rights>Copyright © 2010. Published by Mosby, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-1d94d2957591b53af5c0f3245bbad05325444536eaa81af3d7c5a270e218e6ac3</citedby><cites>FETCH-LOGICAL-c490t-1d94d2957591b53af5c0f3245bbad05325444536eaa81af3d7c5a270e218e6ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtcvs.2010.08.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20850803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amorim, Paulo A., MD</creatorcontrib><creatorcontrib>Nguyen, T. Dung, BS</creatorcontrib><creatorcontrib>Shingu, Yasushige, MD</creatorcontrib><creatorcontrib>Schwarzer, Michael, PhD</creatorcontrib><creatorcontrib>Mohr, Friedrich W., MD, PhD</creatorcontrib><creatorcontrib>Schrepper, Andrea, MS</creatorcontrib><creatorcontrib>Doenst, Torsten, MD, PhD</creatorcontrib><title>Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression</title><title>The Journal of thoracic and cardiovascular surgery</title><addtitle>J Thorac Cardiovasc Surg</addtitle><description>Objective Myocardial infarction leads to contractile dysfunction. In patients with diabetes, impaired contractility has been associated with the loss of insulin effects and mitochondrial dysfunction. We assessed cardiac insulin sensitivity and mitochondrial and contractile function in rats after ligation of the left coronary artery. Methods At 2 weeks after left coronary artery ligation, we performed echocardiography in vivo and assessed the substrate use and insulin response in the isolated working heart and the regulation of insulin (Akt, glucose transporter type 4) and mitochondrial signaling (p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A) using polymerase chain reaction and Western blotting. Results The infarcted hearts were dilated and had a reduced ejection fraction (ejection fraction &lt; 50%). The basal glucose oxidation was preserved, but the fatty acid oxidation was significantly reduced. Insulin’s effect on substrate oxidation was significantly impaired for both the decrease in fatty acid oxidation and the increase in glucose oxidation. However, insulin-stimulated glucose uptake was normal in the infarcted hearts, consistent with normal insulin-induced phosphorylation of Akt and unchanged mRNA expression of glucose transporter type 4. The impaired oxidative response to insulin was associated with reduced mRNA expression of the genes regulating fatty acid oxidation (long-chain-acyl-coenzyme A dehydrogenase, carnitine palmitoyltransferase 1, peroxisome proliferator-activated receptor-α) and mitochondrial biogenesis (mitochondrial transcription factor A). Although mRNA expression of the mitochondrial master regulator peroxisome proliferator-activated receptor-γ coactivator 1α was normal in the infarcted hearts, the protein expression of its post-transcriptional activator, p38 mitogen-activated protein kinase, was significantly reduced. Conclusions Myocardial infarction in rats caused partial insulin resistance at the level of substrate oxidation, which was associated with mitochondrial and cardiac contractile dysfunction. Mitochondrial dysfunction was characterized by a reduced capacity to oxidize fatty acids and might have resulted from impaired mitochondrial biogenesis through the lack of p38 mitogen-activated protein kinase.</description><subject>Acyl-CoA Dehydrogenase, Long-Chain - genetics</subject><subject>Animals</subject><subject>Blood Glucose - metabolism</subject><subject>Cardiothoracic Surgery</subject><subject>Carnitine O-Palmitoyltransferase - genetics</subject><subject>Disease Models, Animal</subject><subject>Fatty Acids - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Glucose Transporter Type 4 - genetics</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance - genetics</subject><subject>Male</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Myocardial Contraction - genetics</subject><subject>Myocardial Infarction - diagnostic imaging</subject><subject>Myocardial Infarction - genetics</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Myocardium - metabolism</subject><subject>Oxidation-Reduction</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Phosphorylation</subject><subject>PPAR alpha - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Time Factors</subject><subject>Transcription Factors - genetics</subject><subject>Ultrasonography</subject><issn>0022-5223</issn><issn>1097-685X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhSMEokPhCZBQdqxmem3H-VmAhKoClYpYAFJ31h37hnpI7GA7pfMqPC3OTGHBpiv_ffdc65xbFC8ZbBiw-my32SV9Gzcc8g20GwDxqFgx6Jp13crrx8UKgPO15FycFM9i3AFAA6x7WpxwaCW0IFbF7097rzEYi0NpXY9BJ-td3pYBUyw1zpFiOWFIB2Kc0IaRXFoI6-I8LCTFybtIJcbotcVEpvxl001-MLPOhx5T2peorSn9nTV4aIHOlKNNXt94Z8Ki_p0clXQ3Zb2YiefFkx6HSC_u19Pi2_uLr-cf11efP1yev7ta66qDtGamqwzvZCM7tpUCe6mhF7yS2y0akILLqqqkqAmxZdgL02iJvAHirKUatTgtXh91p-B_zhSTGm3UNAzoyM9RdbKqgTWyfpBcviCgangmxZHUwccYqFdTsCOGvWKglvTUTh3SU0t6ClqV08tVr-715-1I5l_N37gy8OYIUPbj1lJQUVty2WMbSCdlvH2gwdv_6nUO0GocftCe4s7PwWWrFVORK1BflgFa5ofl0Wnr7lr8ARc3xTQ</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Amorim, Paulo A., MD</creator><creator>Nguyen, T. Dung, BS</creator><creator>Shingu, Yasushige, MD</creator><creator>Schwarzer, Michael, PhD</creator><creator>Mohr, Friedrich W., MD, PhD</creator><creator>Schrepper, Andrea, MS</creator><creator>Doenst, Torsten, MD, PhD</creator><general>Mosby, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20101101</creationdate><title>Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression</title><author>Amorim, Paulo A., MD ; Nguyen, T. Dung, BS ; Shingu, Yasushige, MD ; Schwarzer, Michael, PhD ; Mohr, Friedrich W., MD, PhD ; Schrepper, Andrea, MS ; Doenst, Torsten, MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-1d94d2957591b53af5c0f3245bbad05325444536eaa81af3d7c5a270e218e6ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acyl-CoA Dehydrogenase, Long-Chain - genetics</topic><topic>Animals</topic><topic>Blood Glucose - metabolism</topic><topic>Cardiothoracic Surgery</topic><topic>Carnitine O-Palmitoyltransferase - genetics</topic><topic>Disease Models, Animal</topic><topic>Fatty Acids - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Glucose Transporter Type 4 - genetics</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance - genetics</topic><topic>Male</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Myocardial Contraction - genetics</topic><topic>Myocardial Infarction - diagnostic imaging</topic><topic>Myocardial Infarction - genetics</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Myocardium - metabolism</topic><topic>Oxidation-Reduction</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Phosphorylation</topic><topic>PPAR alpha - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Time Factors</topic><topic>Transcription Factors - genetics</topic><topic>Ultrasonography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amorim, Paulo A., MD</creatorcontrib><creatorcontrib>Nguyen, T. Dung, BS</creatorcontrib><creatorcontrib>Shingu, Yasushige, MD</creatorcontrib><creatorcontrib>Schwarzer, Michael, PhD</creatorcontrib><creatorcontrib>Mohr, Friedrich W., MD, PhD</creatorcontrib><creatorcontrib>Schrepper, Andrea, MS</creatorcontrib><creatorcontrib>Doenst, Torsten, MD, PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amorim, Paulo A., MD</au><au>Nguyen, T. Dung, BS</au><au>Shingu, Yasushige, MD</au><au>Schwarzer, Michael, PhD</au><au>Mohr, Friedrich W., MD, PhD</au><au>Schrepper, Andrea, MS</au><au>Doenst, Torsten, MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression</atitle><jtitle>The Journal of thoracic and cardiovascular surgery</jtitle><addtitle>J Thorac Cardiovasc Surg</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>140</volume><issue>5</issue><spage>1160</spage><epage>1167</epage><pages>1160-1167</pages><issn>0022-5223</issn><eissn>1097-685X</eissn><abstract>Objective Myocardial infarction leads to contractile dysfunction. In patients with diabetes, impaired contractility has been associated with the loss of insulin effects and mitochondrial dysfunction. We assessed cardiac insulin sensitivity and mitochondrial and contractile function in rats after ligation of the left coronary artery. Methods At 2 weeks after left coronary artery ligation, we performed echocardiography in vivo and assessed the substrate use and insulin response in the isolated working heart and the regulation of insulin (Akt, glucose transporter type 4) and mitochondrial signaling (p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A) using polymerase chain reaction and Western blotting. Results The infarcted hearts were dilated and had a reduced ejection fraction (ejection fraction &lt; 50%). The basal glucose oxidation was preserved, but the fatty acid oxidation was significantly reduced. Insulin’s effect on substrate oxidation was significantly impaired for both the decrease in fatty acid oxidation and the increase in glucose oxidation. However, insulin-stimulated glucose uptake was normal in the infarcted hearts, consistent with normal insulin-induced phosphorylation of Akt and unchanged mRNA expression of glucose transporter type 4. The impaired oxidative response to insulin was associated with reduced mRNA expression of the genes regulating fatty acid oxidation (long-chain-acyl-coenzyme A dehydrogenase, carnitine palmitoyltransferase 1, peroxisome proliferator-activated receptor-α) and mitochondrial biogenesis (mitochondrial transcription factor A). Although mRNA expression of the mitochondrial master regulator peroxisome proliferator-activated receptor-γ coactivator 1α was normal in the infarcted hearts, the protein expression of its post-transcriptional activator, p38 mitogen-activated protein kinase, was significantly reduced. Conclusions Myocardial infarction in rats caused partial insulin resistance at the level of substrate oxidation, which was associated with mitochondrial and cardiac contractile dysfunction. Mitochondrial dysfunction was characterized by a reduced capacity to oxidize fatty acids and might have resulted from impaired mitochondrial biogenesis through the lack of p38 mitogen-activated protein kinase.</abstract><cop>United States</cop><pub>Mosby, Inc</pub><pmid>20850803</pmid><doi>10.1016/j.jtcvs.2010.08.003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5223
ispartof The Journal of thoracic and cardiovascular surgery, 2010-11, Vol.140 (5), p.1160-1167
issn 0022-5223
1097-685X
language eng
recordid cdi_proquest_miscellaneous_954601756
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acyl-CoA Dehydrogenase, Long-Chain - genetics
Animals
Blood Glucose - metabolism
Cardiothoracic Surgery
Carnitine O-Palmitoyltransferase - genetics
Disease Models, Animal
Fatty Acids - metabolism
Gene Expression Regulation
Glucose Transporter Type 4 - genetics
Glucose Transporter Type 4 - metabolism
Insulin - metabolism
Insulin Resistance - genetics
Male
Mitochondria, Heart - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Myocardial Contraction - genetics
Myocardial Infarction - diagnostic imaging
Myocardial Infarction - genetics
Myocardial Infarction - metabolism
Myocardial Infarction - physiopathology
Myocardium - metabolism
Oxidation-Reduction
p38 Mitogen-Activated Protein Kinases - metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Phosphorylation
PPAR alpha - genetics
Proto-Oncogene Proteins c-akt - metabolism
Rats
Rats, Sprague-Dawley
RNA, Messenger - metabolism
RNA-Binding Proteins - genetics
Time Factors
Transcription Factors - genetics
Ultrasonography
title Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myocardial%20infarction%20in%20rats%20causes%20partial%20impairment%20in%20insulin%20response%20associated%20with%20reduced%20fatty%20acid%20oxidation%20and%20mitochondrial%20gene%20expression&rft.jtitle=The%20Journal%20of%20thoracic%20and%20cardiovascular%20surgery&rft.au=Amorim,%20Paulo%20A.,%20MD&rft.date=2010-11-01&rft.volume=140&rft.issue=5&rft.spage=1160&rft.epage=1167&rft.pages=1160-1167&rft.issn=0022-5223&rft.eissn=1097-685X&rft_id=info:doi/10.1016/j.jtcvs.2010.08.003&rft_dat=%3Cproquest_cross%3E759130472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=759130472&rft_id=info:pmid/20850803&rft_els_id=1_s2_0_S002252231000869X&rfr_iscdi=true