Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria
The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium ox...
Gespeichert in:
Veröffentlicht in: | Reviews in environmental science and biotechnology 2004-09, Vol.3 (3), p.255-264 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | 3 |
container_start_page | 255 |
container_title | Reviews in environmental science and biotechnology |
container_volume | 3 |
creator | Kartal, Boran van Niftrik, Laura Sliekers, Olav Schmid, Markus C. Schmidt, Ingo van de Pas-Schoonen, Katinka Cirpus, Irina van der Star, Wouter van Loosdrecht, Mark Abma, Wiebe Kuenen, J. Gijs Mulder, Jan-Willem Jetten, Mike S. M. den Camp, Huub Op Strous, Marc van de Vossenberg, Jack |
description | The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m^sup -3^ reactor day^sup -1^. The first 75 m^sup 3^ anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m^sup -3^reactor day^sup -1^. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. The K^sub s^ values for ammonium and nitrite are below 5 μM. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1 μM. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized as Candidatus "Brocadia anammoxidans". Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively named Candidatus "Kuenenia stuttgartiensis", Candidatus "Scalindua |
doi_str_mv | 10.1007/s11157-004-7247-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954575731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2146123231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-7208d8c27623deef36e54e736b8bcfb2e2006db0218b5db454daa179f0ebe97f3</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoOI7-AHfFjRujSZpHuxwGXzDgxlmHvDpmaJuatGL99WYYV67u5fBxOHwAXGN0jxESDwljzAREiEJBqIDsBCxyQGBdEX56-HkNsUDsHFyktEeIYF7zBdiuhqH1Ro0-9HeFMwEOH3PyoQ27uVC9LbQP1n-5mPw4F6HJmXIxaG8K1XWh91MHw7e3_sf3u0IrM7ro1SU4a1Sb3NXfXYLt0-P7-gVu3p5f16sNNKRiY16KKlsZIjgprXNNyR2jTpRcV9o0mjiCELc6b600s5oyapXCom6Q064WTbkEt8feIYbPyaVRdj4Z17aqd2FKsmaUCSZKnMmbf-Q-TLHP46RgFNNa1CRD-AiZGFKKrpFD9J2Ks8RIHjTLo2aZNcuDZsnKX-NvcVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754149792</pqid></control><display><type>article</type><title>Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kartal, Boran ; van Niftrik, Laura ; Sliekers, Olav ; Schmid, Markus C. ; Schmidt, Ingo ; van de Pas-Schoonen, Katinka ; Cirpus, Irina ; van der Star, Wouter ; van Loosdrecht, Mark ; Abma, Wiebe ; Kuenen, J. Gijs ; Mulder, Jan-Willem ; Jetten, Mike S. M. ; den Camp, Huub Op ; Strous, Marc ; van de Vossenberg, Jack</creator><creatorcontrib>Kartal, Boran ; van Niftrik, Laura ; Sliekers, Olav ; Schmid, Markus C. ; Schmidt, Ingo ; van de Pas-Schoonen, Katinka ; Cirpus, Irina ; van der Star, Wouter ; van Loosdrecht, Mark ; Abma, Wiebe ; Kuenen, J. Gijs ; Mulder, Jan-Willem ; Jetten, Mike S. M. ; den Camp, Huub Op ; Strous, Marc ; van de Vossenberg, Jack</creatorcontrib><description>The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m^sup -3^ reactor day^sup -1^. The first 75 m^sup 3^ anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m^sup -3^reactor day^sup -1^. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. The K^sub s^ values for ammonium and nitrite are below 5 μM. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1 μM. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized as Candidatus "Brocadia anammoxidans". Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively named Candidatus "Kuenenia stuttgartiensis", Candidatus "Scalindua wagneri" and Candidatus "Scalindua brodae". A close relative of the latter, Candidatus "Scalindua sorokinii" was found to be responsible for about 50% of the nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player in the oceanic nitrogen cycle.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1569-1705</identifier><identifier>EISSN: 1572-9826</identifier><identifier>DOI: 10.1007/s11157-004-7247-5</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Ammonium ; Bacteria ; Centrifugation ; Ethanol ; Lipids ; Nitrates ; Nitrification ; Nitrogen ; Nitrogen cycle ; Nitrogen removal ; Oxygen ; Planctomycetes ; Reactors ; Urea ; Wastewater treatment plants</subject><ispartof>Reviews in environmental science and biotechnology, 2004-09, Vol.3 (3), p.255-264</ispartof><rights>Springer 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-7208d8c27623deef36e54e736b8bcfb2e2006db0218b5db454daa179f0ebe97f3</citedby><cites>FETCH-LOGICAL-c285t-7208d8c27623deef36e54e736b8bcfb2e2006db0218b5db454daa179f0ebe97f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kartal, Boran</creatorcontrib><creatorcontrib>van Niftrik, Laura</creatorcontrib><creatorcontrib>Sliekers, Olav</creatorcontrib><creatorcontrib>Schmid, Markus C.</creatorcontrib><creatorcontrib>Schmidt, Ingo</creatorcontrib><creatorcontrib>van de Pas-Schoonen, Katinka</creatorcontrib><creatorcontrib>Cirpus, Irina</creatorcontrib><creatorcontrib>van der Star, Wouter</creatorcontrib><creatorcontrib>van Loosdrecht, Mark</creatorcontrib><creatorcontrib>Abma, Wiebe</creatorcontrib><creatorcontrib>Kuenen, J. Gijs</creatorcontrib><creatorcontrib>Mulder, Jan-Willem</creatorcontrib><creatorcontrib>Jetten, Mike S. M.</creatorcontrib><creatorcontrib>den Camp, Huub Op</creatorcontrib><creatorcontrib>Strous, Marc</creatorcontrib><creatorcontrib>van de Vossenberg, Jack</creatorcontrib><title>Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria</title><title>Reviews in environmental science and biotechnology</title><description>The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m^sup -3^ reactor day^sup -1^. The first 75 m^sup 3^ anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m^sup -3^reactor day^sup -1^. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. The K^sub s^ values for ammonium and nitrite are below 5 μM. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1 μM. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized as Candidatus "Brocadia anammoxidans". Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively named Candidatus "Kuenenia stuttgartiensis", Candidatus "Scalindua wagneri" and Candidatus "Scalindua brodae". A close relative of the latter, Candidatus "Scalindua sorokinii" was found to be responsible for about 50% of the nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player in the oceanic nitrogen cycle.[PUBLICATION ABSTRACT]</description><subject>Ammonium</subject><subject>Bacteria</subject><subject>Centrifugation</subject><subject>Ethanol</subject><subject>Lipids</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Nitrogen cycle</subject><subject>Nitrogen removal</subject><subject>Oxygen</subject><subject>Planctomycetes</subject><subject>Reactors</subject><subject>Urea</subject><subject>Wastewater treatment plants</subject><issn>1569-1705</issn><issn>1572-9826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkEtLxDAUhYMoOI7-AHfFjRujSZpHuxwGXzDgxlmHvDpmaJuatGL99WYYV67u5fBxOHwAXGN0jxESDwljzAREiEJBqIDsBCxyQGBdEX56-HkNsUDsHFyktEeIYF7zBdiuhqH1Ro0-9HeFMwEOH3PyoQ27uVC9LbQP1n-5mPw4F6HJmXIxaG8K1XWh91MHw7e3_sf3u0IrM7ro1SU4a1Sb3NXfXYLt0-P7-gVu3p5f16sNNKRiY16KKlsZIjgprXNNyR2jTpRcV9o0mjiCELc6b600s5oyapXCom6Q064WTbkEt8feIYbPyaVRdj4Z17aqd2FKsmaUCSZKnMmbf-Q-TLHP46RgFNNa1CRD-AiZGFKKrpFD9J2Ks8RIHjTLo2aZNcuDZsnKX-NvcVc</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Kartal, Boran</creator><creator>van Niftrik, Laura</creator><creator>Sliekers, Olav</creator><creator>Schmid, Markus C.</creator><creator>Schmidt, Ingo</creator><creator>van de Pas-Schoonen, Katinka</creator><creator>Cirpus, Irina</creator><creator>van der Star, Wouter</creator><creator>van Loosdrecht, Mark</creator><creator>Abma, Wiebe</creator><creator>Kuenen, J. Gijs</creator><creator>Mulder, Jan-Willem</creator><creator>Jetten, Mike S. M.</creator><creator>den Camp, Huub Op</creator><creator>Strous, Marc</creator><creator>van de Vossenberg, Jack</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7QL</scope><scope>7U6</scope></search><sort><creationdate>20040901</creationdate><title>Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria</title><author>Kartal, Boran ; van Niftrik, Laura ; Sliekers, Olav ; Schmid, Markus C. ; Schmidt, Ingo ; van de Pas-Schoonen, Katinka ; Cirpus, Irina ; van der Star, Wouter ; van Loosdrecht, Mark ; Abma, Wiebe ; Kuenen, J. Gijs ; Mulder, Jan-Willem ; Jetten, Mike S. M. ; den Camp, Huub Op ; Strous, Marc ; van de Vossenberg, Jack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-7208d8c27623deef36e54e736b8bcfb2e2006db0218b5db454daa179f0ebe97f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ammonium</topic><topic>Bacteria</topic><topic>Centrifugation</topic><topic>Ethanol</topic><topic>Lipids</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Nitrogen cycle</topic><topic>Nitrogen removal</topic><topic>Oxygen</topic><topic>Planctomycetes</topic><topic>Reactors</topic><topic>Urea</topic><topic>Wastewater treatment plants</topic><toplevel>online_resources</toplevel><creatorcontrib>Kartal, Boran</creatorcontrib><creatorcontrib>van Niftrik, Laura</creatorcontrib><creatorcontrib>Sliekers, Olav</creatorcontrib><creatorcontrib>Schmid, Markus C.</creatorcontrib><creatorcontrib>Schmidt, Ingo</creatorcontrib><creatorcontrib>van de Pas-Schoonen, Katinka</creatorcontrib><creatorcontrib>Cirpus, Irina</creatorcontrib><creatorcontrib>van der Star, Wouter</creatorcontrib><creatorcontrib>van Loosdrecht, Mark</creatorcontrib><creatorcontrib>Abma, Wiebe</creatorcontrib><creatorcontrib>Kuenen, J. Gijs</creatorcontrib><creatorcontrib>Mulder, Jan-Willem</creatorcontrib><creatorcontrib>Jetten, Mike S. M.</creatorcontrib><creatorcontrib>den Camp, Huub Op</creatorcontrib><creatorcontrib>Strous, Marc</creatorcontrib><creatorcontrib>van de Vossenberg, Jack</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Sustainability Science Abstracts</collection><jtitle>Reviews in environmental science and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kartal, Boran</au><au>van Niftrik, Laura</au><au>Sliekers, Olav</au><au>Schmid, Markus C.</au><au>Schmidt, Ingo</au><au>van de Pas-Schoonen, Katinka</au><au>Cirpus, Irina</au><au>van der Star, Wouter</au><au>van Loosdrecht, Mark</au><au>Abma, Wiebe</au><au>Kuenen, J. Gijs</au><au>Mulder, Jan-Willem</au><au>Jetten, Mike S. M.</au><au>den Camp, Huub Op</au><au>Strous, Marc</au><au>van de Vossenberg, Jack</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria</atitle><jtitle>Reviews in environmental science and biotechnology</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>3</volume><issue>3</issue><spage>255</spage><epage>264</epage><pages>255-264</pages><issn>1569-1705</issn><eissn>1572-9826</eissn><abstract>The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobic ammonium oxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m^sup -3^ reactor day^sup -1^. The first 75 m^sup 3^ anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m^sup -3^reactor day^sup -1^. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. The K^sub s^ values for ammonium and nitrite are below 5 μM. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1 μM. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized as Candidatus "Brocadia anammoxidans". Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively named Candidatus "Kuenenia stuttgartiensis", Candidatus "Scalindua wagneri" and Candidatus "Scalindua brodae". A close relative of the latter, Candidatus "Scalindua sorokinii" was found to be responsible for about 50% of the nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player in the oceanic nitrogen cycle.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11157-004-7247-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-1705 |
ispartof | Reviews in environmental science and biotechnology, 2004-09, Vol.3 (3), p.255-264 |
issn | 1569-1705 1572-9826 |
language | eng |
recordid | cdi_proquest_miscellaneous_954575731 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ammonium Bacteria Centrifugation Ethanol Lipids Nitrates Nitrification Nitrogen Nitrogen cycle Nitrogen removal Oxygen Planctomycetes Reactors Urea Wastewater treatment plants |
title | Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application,%20eco-physiology%20and%20biodiversity%20of%20anaerobic%20ammonium-oxidizing%20bacteria&rft.jtitle=Reviews%20in%20environmental%20science%20and%20biotechnology&rft.au=Kartal,%20Boran&rft.date=2004-09-01&rft.volume=3&rft.issue=3&rft.spage=255&rft.epage=264&rft.pages=255-264&rft.issn=1569-1705&rft.eissn=1572-9826&rft_id=info:doi/10.1007/s11157-004-7247-5&rft_dat=%3Cproquest_cross%3E2146123231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754149792&rft_id=info:pmid/&rfr_iscdi=true |