Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis
Magnetic field trapped in the Gravity Probe B (GP-B) gyroscope rotors contributes to the scale factor of the science readout signal. This contribution is modulated by the rotor’s polhode motion. In orbit, polhode period was observed to change due to a small energy dissipation, which significantly co...
Gespeichert in:
Veröffentlicht in: | Space science reviews 2009-12, Vol.148 (1-4), p.397-409 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 1-4 |
container_start_page | 397 |
container_title | Space science reviews |
container_volume | 148 |
creator | Silbergleit, A. Conklin, J. DeBra, D. Dolphin, M. Keiser, G. Kozaczuk, J. Santiago, D. Salomon, M. Worden, P. |
description | Magnetic field trapped in the Gravity Probe B (GP-B) gyroscope rotors contributes to the scale factor of the science readout signal. This contribution is modulated by the rotor’s polhode motion. In orbit, polhode period was observed to change due to a small energy dissipation, which significantly complicates data analysis. We present precise values of spin phase, spin down rate, polhode phase and angle, and scale factor variations obtained from the data by Trapped Flux Mapping. This method finds the (unique) trapped field distribution and rotor motion by fitting a theoretical model to the harmonics of high (gyroscope spin) frequency signal. The results are crucial for accurately determining the gyroscope relativistic drift rate from the science signal. |
doi_str_mv | 10.1007/s11214-009-9548-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954525715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743613003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-c73734ce2afc871affc208f322e57f27add627b51d68f3082ae1828865cf8f233</originalsourceid><addsrcrecordid>eNqNkU9LAzEQxYMoWKsfwFvw4qXRTLL5szdrtVVQLFjPIWYTu7Lu1s0WbD-9KRUEQfQ0MPzeY-Y9hI6BngGl6jwCMMgIpTnJRabJegf1QChGcqnYLupRyjWRnOp9dBDjK6Ubleqhi2lTzZvC4_umK5t6gGetXSx8gcfV8mOAbV3gbu7xZEou8aMrfe08vrKdxcPaVqtYxkO0F2wV_dHX7KOn8fVsdEPuHia3o-EdcRlAR5ziimfOMxucVmBDcIzqwBnzQgWmbFFIpp4FFDJtqWbWg2ZaS-GCDozzPjrd-i7a5n3pY2feyuh8VdnaN8to0teCCQXiT1JlEpjQOfyD5BJ4ii6RJz_I12bZpgii0VLmOWQsTxBsIdc2MbY-mEVbvtl2ZYCaTd5m25JJLW3u1WadNGyriYmtX3z7bfy76BPiBpG3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866991429</pqid></control><display><type>article</type><title>Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Silbergleit, A. ; Conklin, J. ; DeBra, D. ; Dolphin, M. ; Keiser, G. ; Kozaczuk, J. ; Santiago, D. ; Salomon, M. ; Worden, P.</creator><creatorcontrib>Silbergleit, A. ; Conklin, J. ; DeBra, D. ; Dolphin, M. ; Keiser, G. ; Kozaczuk, J. ; Santiago, D. ; Salomon, M. ; Worden, P.</creatorcontrib><description>Magnetic field trapped in the Gravity Probe B (GP-B) gyroscope rotors contributes to the scale factor of the science readout signal. This contribution is modulated by the rotor’s polhode motion. In orbit, polhode period was observed to change due to a small energy dissipation, which significantly complicates data analysis. We present precise values of spin phase, spin down rate, polhode phase and angle, and scale factor variations obtained from the data by Trapped Flux Mapping. This method finds the (unique) trapped field distribution and rotor motion by fitting a theoretical model to the harmonics of high (gyroscope spin) frequency signal. The results are crucial for accurately determining the gyroscope relativistic drift rate from the science signal.</description><identifier>ISSN: 0038-6308</identifier><identifier>EISSN: 1572-9672</identifier><identifier>DOI: 10.1007/s11214-009-9548-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astrophysics and Astroparticles ; Energy dissipation ; Gravity ; Gyroscopes ; Magnetic fields ; Physics ; Physics and Astronomy ; Planetology ; Rotors ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Space science reviews, 2009-12, Vol.148 (1-4), p.397-409</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-c73734ce2afc871affc208f322e57f27add627b51d68f3082ae1828865cf8f233</citedby><cites>FETCH-LOGICAL-c411t-c73734ce2afc871affc208f322e57f27add627b51d68f3082ae1828865cf8f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11214-009-9548-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11214-009-9548-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Silbergleit, A.</creatorcontrib><creatorcontrib>Conklin, J.</creatorcontrib><creatorcontrib>DeBra, D.</creatorcontrib><creatorcontrib>Dolphin, M.</creatorcontrib><creatorcontrib>Keiser, G.</creatorcontrib><creatorcontrib>Kozaczuk, J.</creatorcontrib><creatorcontrib>Santiago, D.</creatorcontrib><creatorcontrib>Salomon, M.</creatorcontrib><creatorcontrib>Worden, P.</creatorcontrib><title>Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis</title><title>Space science reviews</title><addtitle>Space Sci Rev</addtitle><description>Magnetic field trapped in the Gravity Probe B (GP-B) gyroscope rotors contributes to the scale factor of the science readout signal. This contribution is modulated by the rotor’s polhode motion. In orbit, polhode period was observed to change due to a small energy dissipation, which significantly complicates data analysis. We present precise values of spin phase, spin down rate, polhode phase and angle, and scale factor variations obtained from the data by Trapped Flux Mapping. This method finds the (unique) trapped field distribution and rotor motion by fitting a theoretical model to the harmonics of high (gyroscope spin) frequency signal. The results are crucial for accurately determining the gyroscope relativistic drift rate from the science signal.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astrophysics and Astroparticles</subject><subject>Energy dissipation</subject><subject>Gravity</subject><subject>Gyroscopes</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetology</subject><subject>Rotors</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0038-6308</issn><issn>1572-9672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU9LAzEQxYMoWKsfwFvw4qXRTLL5szdrtVVQLFjPIWYTu7Lu1s0WbD-9KRUEQfQ0MPzeY-Y9hI6BngGl6jwCMMgIpTnJRabJegf1QChGcqnYLupRyjWRnOp9dBDjK6Ubleqhi2lTzZvC4_umK5t6gGetXSx8gcfV8mOAbV3gbu7xZEou8aMrfe08vrKdxcPaVqtYxkO0F2wV_dHX7KOn8fVsdEPuHia3o-EdcRlAR5ziimfOMxucVmBDcIzqwBnzQgWmbFFIpp4FFDJtqWbWg2ZaS-GCDozzPjrd-i7a5n3pY2feyuh8VdnaN8to0teCCQXiT1JlEpjQOfyD5BJ4ii6RJz_I12bZpgii0VLmOWQsTxBsIdc2MbY-mEVbvtl2ZYCaTd5m25JJLW3u1WadNGyriYmtX3z7bfy76BPiBpG3</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Silbergleit, A.</creator><creator>Conklin, J.</creator><creator>DeBra, D.</creator><creator>Dolphin, M.</creator><creator>Keiser, G.</creator><creator>Kozaczuk, J.</creator><creator>Santiago, D.</creator><creator>Salomon, M.</creator><creator>Worden, P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20091201</creationdate><title>Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis</title><author>Silbergleit, A. ; Conklin, J. ; DeBra, D. ; Dolphin, M. ; Keiser, G. ; Kozaczuk, J. ; Santiago, D. ; Salomon, M. ; Worden, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-c73734ce2afc871affc208f322e57f27add627b51d68f3082ae1828865cf8f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astrophysics and Astroparticles</topic><topic>Energy dissipation</topic><topic>Gravity</topic><topic>Gyroscopes</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetology</topic><topic>Rotors</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silbergleit, A.</creatorcontrib><creatorcontrib>Conklin, J.</creatorcontrib><creatorcontrib>DeBra, D.</creatorcontrib><creatorcontrib>Dolphin, M.</creatorcontrib><creatorcontrib>Keiser, G.</creatorcontrib><creatorcontrib>Kozaczuk, J.</creatorcontrib><creatorcontrib>Santiago, D.</creatorcontrib><creatorcontrib>Salomon, M.</creatorcontrib><creatorcontrib>Worden, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Space science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silbergleit, A.</au><au>Conklin, J.</au><au>DeBra, D.</au><au>Dolphin, M.</au><au>Keiser, G.</au><au>Kozaczuk, J.</au><au>Santiago, D.</au><au>Salomon, M.</au><au>Worden, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis</atitle><jtitle>Space science reviews</jtitle><stitle>Space Sci Rev</stitle><date>2009-12-01</date><risdate>2009</risdate><volume>148</volume><issue>1-4</issue><spage>397</spage><epage>409</epage><pages>397-409</pages><issn>0038-6308</issn><eissn>1572-9672</eissn><abstract>Magnetic field trapped in the Gravity Probe B (GP-B) gyroscope rotors contributes to the scale factor of the science readout signal. This contribution is modulated by the rotor’s polhode motion. In orbit, polhode period was observed to change due to a small energy dissipation, which significantly complicates data analysis. We present precise values of spin phase, spin down rate, polhode phase and angle, and scale factor variations obtained from the data by Trapped Flux Mapping. This method finds the (unique) trapped field distribution and rotor motion by fitting a theoretical model to the harmonics of high (gyroscope spin) frequency signal. The results are crucial for accurately determining the gyroscope relativistic drift rate from the science signal.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11214-009-9548-z</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-6308 |
ispartof | Space science reviews, 2009-12, Vol.148 (1-4), p.397-409 |
issn | 0038-6308 1572-9672 |
language | eng |
recordid | cdi_proquest_miscellaneous_954525715 |
source | Springer Nature - Complete Springer Journals |
subjects | Aerospace Technology and Astronautics Astrophysics and Astroparticles Energy dissipation Gravity Gyroscopes Magnetic fields Physics Physics and Astronomy Planetology Rotors Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | Polhode Motion, Trapped Flux, and the GP-B Science Data Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polhode%20Motion,%20Trapped%20Flux,%20and%20the%20GP-B%20Science%20Data%20Analysis&rft.jtitle=Space%20science%20reviews&rft.au=Silbergleit,%20A.&rft.date=2009-12-01&rft.volume=148&rft.issue=1-4&rft.spage=397&rft.epage=409&rft.pages=397-409&rft.issn=0038-6308&rft.eissn=1572-9672&rft_id=info:doi/10.1007/s11214-009-9548-z&rft_dat=%3Cproquest_cross%3E743613003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866991429&rft_id=info:pmid/&rfr_iscdi=true |