Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development
The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila , and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic pla...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2012-04, Vol.45 (2), p.388-402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 402 |
---|---|
container_issue | 2 |
container_start_page | 388 |
container_title | Molecular neurobiology |
container_volume | 45 |
creator | Dason, Jeffrey S. Romero-Pozuelo, Jesús Atwood, Harold L. Ferrús, Alberto |
description | The calcium-binding protein frequenin (Frq), discovered in the fruit fly
Drosophila
, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation. |
doi_str_mv | 10.1007/s12035-012-8250-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_948912620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617009741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p313t-4ac24f60f346d954c79b56e572e8df138f69da380d59ef5823398334da62b76f3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlZ_gBsZ3OgmNu_HUqqtQlWwug7pTCJTpplxMiP035vSiuDC1V3cj3PuPQeAc4xuMEJyHDFBlEOECVSEI8gOwBBzriHGihyCIVKaQimYGoCTGFcIEYKRPAYDQqgWBNMhmD31VVc2lcte68rFzNdtNm3dZ-9CGcbPkwXEWRmyxSbYpivzbNqHvCvrkNlQZHfuy1V1s3ahOwVH3lbRne3nCLxP798mD3D-Mnuc3M5hQzHtILM5YV4gT5koNGe51EsuHJfEqcJjqrzQhaUKFVw7zxWhVCtKWWEFWUrh6Qhc7XSbtk5Hxs6sy5i7qrLB1X00mimNiUi5jMD1v2RKUCnGtBYJvfyDruq-DekPo6kSWmipE3Sxh_rl2hWmacu1bTfmJ8sEkB0Q0yp8uPZXBaOtnTS7wkwqzGwLM4x-Az9dgx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>938696979</pqid></control><display><type>article</type><title>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Dason, Jeffrey S. ; Romero-Pozuelo, Jesús ; Atwood, Harold L. ; Ferrús, Alberto</creator><creatorcontrib>Dason, Jeffrey S. ; Romero-Pozuelo, Jesús ; Atwood, Harold L. ; Ferrús, Alberto</creatorcontrib><description>The calcium-binding protein frequenin (Frq), discovered in the fruit fly
Drosophila
, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-012-8250-4</identifier><identifier>PMID: 22396213</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Animals ; Axonogenesis ; Biomedical and Life Sciences ; Biomedicine ; Bipolar disorder ; Calcium ; Calcium channels ; Calcium channels (voltage-gated) ; Calcium Signaling - physiology ; Calcium-binding protein ; Cell Biology ; Cell Differentiation - physiology ; Drosophila ; Freq protein ; Humans ; Learning ; Memory ; Mental retardation ; Nervous system ; Neurobiology ; Neurocognitive Disorders - metabolism ; Neurocognitive Disorders - pathology ; Neurocognitive Disorders - physiopathology ; Neurology ; Neuronal Calcium-Sensor Proteins - physiology ; Neurons ; Neuropeptides - physiology ; Neurosciences ; Neurotransmission ; Neurotransmitter release ; Neurotransmitters ; Plasticity (synaptic) ; Presynaptic Terminals - physiology ; Proteins ; Regeneration ; Schizophrenia ; Synaptic transmission ; Synaptic Transmission - physiology ; Synaptogenesis ; X chromosome</subject><ispartof>Molecular neurobiology, 2012-04, Vol.45 (2), p.388-402</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p313t-4ac24f60f346d954c79b56e572e8df138f69da380d59ef5823398334da62b76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-012-8250-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-012-8250-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22396213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dason, Jeffrey S.</creatorcontrib><creatorcontrib>Romero-Pozuelo, Jesús</creatorcontrib><creatorcontrib>Atwood, Harold L.</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><title>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>The calcium-binding protein frequenin (Frq), discovered in the fruit fly
Drosophila
, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.</description><subject>Animals</subject><subject>Axonogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bipolar disorder</subject><subject>Calcium</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium-binding protein</subject><subject>Cell Biology</subject><subject>Cell Differentiation - physiology</subject><subject>Drosophila</subject><subject>Freq protein</subject><subject>Humans</subject><subject>Learning</subject><subject>Memory</subject><subject>Mental retardation</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurocognitive Disorders - metabolism</subject><subject>Neurocognitive Disorders - pathology</subject><subject>Neurocognitive Disorders - physiopathology</subject><subject>Neurology</subject><subject>Neuronal Calcium-Sensor Proteins - physiology</subject><subject>Neurons</subject><subject>Neuropeptides - physiology</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>Plasticity (synaptic)</subject><subject>Presynaptic Terminals - physiology</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>Schizophrenia</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptogenesis</subject><subject>X chromosome</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMotlZ_gBsZ3OgmNu_HUqqtQlWwug7pTCJTpplxMiP035vSiuDC1V3cj3PuPQeAc4xuMEJyHDFBlEOECVSEI8gOwBBzriHGihyCIVKaQimYGoCTGFcIEYKRPAYDQqgWBNMhmD31VVc2lcte68rFzNdtNm3dZ-9CGcbPkwXEWRmyxSbYpivzbNqHvCvrkNlQZHfuy1V1s3ahOwVH3lbRne3nCLxP798mD3D-Mnuc3M5hQzHtILM5YV4gT5koNGe51EsuHJfEqcJjqrzQhaUKFVw7zxWhVCtKWWEFWUrh6Qhc7XSbtk5Hxs6sy5i7qrLB1X00mimNiUi5jMD1v2RKUCnGtBYJvfyDruq-DekPo6kSWmipE3Sxh_rl2hWmacu1bTfmJ8sEkB0Q0yp8uPZXBaOtnTS7wkwqzGwLM4x-Az9dgx8</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Dason, Jeffrey S.</creator><creator>Romero-Pozuelo, Jesús</creator><creator>Atwood, Harold L.</creator><creator>Ferrús, Alberto</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</title><author>Dason, Jeffrey S. ; Romero-Pozuelo, Jesús ; Atwood, Harold L. ; Ferrús, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p313t-4ac24f60f346d954c79b56e572e8df138f69da380d59ef5823398334da62b76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Axonogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bipolar disorder</topic><topic>Calcium</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium-binding protein</topic><topic>Cell Biology</topic><topic>Cell Differentiation - physiology</topic><topic>Drosophila</topic><topic>Freq protein</topic><topic>Humans</topic><topic>Learning</topic><topic>Memory</topic><topic>Mental retardation</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurocognitive Disorders - metabolism</topic><topic>Neurocognitive Disorders - pathology</topic><topic>Neurocognitive Disorders - physiopathology</topic><topic>Neurology</topic><topic>Neuronal Calcium-Sensor Proteins - physiology</topic><topic>Neurons</topic><topic>Neuropeptides - physiology</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>Plasticity (synaptic)</topic><topic>Presynaptic Terminals - physiology</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>Schizophrenia</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptogenesis</topic><topic>X chromosome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dason, Jeffrey S.</creatorcontrib><creatorcontrib>Romero-Pozuelo, Jesús</creatorcontrib><creatorcontrib>Atwood, Harold L.</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dason, Jeffrey S.</au><au>Romero-Pozuelo, Jesús</au><au>Atwood, Harold L.</au><au>Ferrús, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>45</volume><issue>2</issue><spage>388</spage><epage>402</epage><pages>388-402</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>The calcium-binding protein frequenin (Frq), discovered in the fruit fly
Drosophila
, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>22396213</pmid><doi>10.1007/s12035-012-8250-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2012-04, Vol.45 (2), p.388-402 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_miscellaneous_948912620 |
source | MEDLINE; SpringerNature Complete Journals |
subjects | Animals Axonogenesis Biomedical and Life Sciences Biomedicine Bipolar disorder Calcium Calcium channels Calcium channels (voltage-gated) Calcium Signaling - physiology Calcium-binding protein Cell Biology Cell Differentiation - physiology Drosophila Freq protein Humans Learning Memory Mental retardation Nervous system Neurobiology Neurocognitive Disorders - metabolism Neurocognitive Disorders - pathology Neurocognitive Disorders - physiopathology Neurology Neuronal Calcium-Sensor Proteins - physiology Neurons Neuropeptides - physiology Neurosciences Neurotransmission Neurotransmitter release Neurotransmitters Plasticity (synaptic) Presynaptic Terminals - physiology Proteins Regeneration Schizophrenia Synaptic transmission Synaptic Transmission - physiology Synaptogenesis X chromosome |
title | Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Roles%20for%20Frequenin/NCS-1%20in%20Synaptic%20Function%20and%20Development&rft.jtitle=Molecular%20neurobiology&rft.au=Dason,%20Jeffrey%20S.&rft.date=2012-04-01&rft.volume=45&rft.issue=2&rft.spage=388&rft.epage=402&rft.pages=388-402&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-012-8250-4&rft_dat=%3Cproquest_pubme%3E2617009741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=938696979&rft_id=info:pmid/22396213&rfr_iscdi=true |