Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development

The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila , and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2012-04, Vol.45 (2), p.388-402
Hauptverfasser: Dason, Jeffrey S., Romero-Pozuelo, Jesús, Atwood, Harold L., Ferrús, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 2
container_start_page 388
container_title Molecular neurobiology
container_volume 45
creator Dason, Jeffrey S.
Romero-Pozuelo, Jesús
Atwood, Harold L.
Ferrús, Alberto
description The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila , and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.
doi_str_mv 10.1007/s12035-012-8250-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_948912620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617009741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p313t-4ac24f60f346d954c79b56e572e8df138f69da380d59ef5823398334da62b76f3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotlZ_gBsZ3OgmNu_HUqqtQlWwug7pTCJTpplxMiP035vSiuDC1V3cj3PuPQeAc4xuMEJyHDFBlEOECVSEI8gOwBBzriHGihyCIVKaQimYGoCTGFcIEYKRPAYDQqgWBNMhmD31VVc2lcte68rFzNdtNm3dZ-9CGcbPkwXEWRmyxSbYpivzbNqHvCvrkNlQZHfuy1V1s3ahOwVH3lbRne3nCLxP798mD3D-Mnuc3M5hQzHtILM5YV4gT5koNGe51EsuHJfEqcJjqrzQhaUKFVw7zxWhVCtKWWEFWUrh6Qhc7XSbtk5Hxs6sy5i7qrLB1X00mimNiUi5jMD1v2RKUCnGtBYJvfyDruq-DekPo6kSWmipE3Sxh_rl2hWmacu1bTfmJ8sEkB0Q0yp8uPZXBaOtnTS7wkwqzGwLM4x-Az9dgx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>938696979</pqid></control><display><type>article</type><title>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Dason, Jeffrey S. ; Romero-Pozuelo, Jesús ; Atwood, Harold L. ; Ferrús, Alberto</creator><creatorcontrib>Dason, Jeffrey S. ; Romero-Pozuelo, Jesús ; Atwood, Harold L. ; Ferrús, Alberto</creatorcontrib><description>The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila , and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-012-8250-4</identifier><identifier>PMID: 22396213</identifier><language>eng</language><publisher>New York: Humana Press Inc</publisher><subject>Animals ; Axonogenesis ; Biomedical and Life Sciences ; Biomedicine ; Bipolar disorder ; Calcium ; Calcium channels ; Calcium channels (voltage-gated) ; Calcium Signaling - physiology ; Calcium-binding protein ; Cell Biology ; Cell Differentiation - physiology ; Drosophila ; Freq protein ; Humans ; Learning ; Memory ; Mental retardation ; Nervous system ; Neurobiology ; Neurocognitive Disorders - metabolism ; Neurocognitive Disorders - pathology ; Neurocognitive Disorders - physiopathology ; Neurology ; Neuronal Calcium-Sensor Proteins - physiology ; Neurons ; Neuropeptides - physiology ; Neurosciences ; Neurotransmission ; Neurotransmitter release ; Neurotransmitters ; Plasticity (synaptic) ; Presynaptic Terminals - physiology ; Proteins ; Regeneration ; Schizophrenia ; Synaptic transmission ; Synaptic Transmission - physiology ; Synaptogenesis ; X chromosome</subject><ispartof>Molecular neurobiology, 2012-04, Vol.45 (2), p.388-402</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p313t-4ac24f60f346d954c79b56e572e8df138f69da380d59ef5823398334da62b76f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-012-8250-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-012-8250-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22396213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dason, Jeffrey S.</creatorcontrib><creatorcontrib>Romero-Pozuelo, Jesús</creatorcontrib><creatorcontrib>Atwood, Harold L.</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><title>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila , and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.</description><subject>Animals</subject><subject>Axonogenesis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bipolar disorder</subject><subject>Calcium</subject><subject>Calcium channels</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium-binding protein</subject><subject>Cell Biology</subject><subject>Cell Differentiation - physiology</subject><subject>Drosophila</subject><subject>Freq protein</subject><subject>Humans</subject><subject>Learning</subject><subject>Memory</subject><subject>Mental retardation</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurocognitive Disorders - metabolism</subject><subject>Neurocognitive Disorders - pathology</subject><subject>Neurocognitive Disorders - physiopathology</subject><subject>Neurology</subject><subject>Neuronal Calcium-Sensor Proteins - physiology</subject><subject>Neurons</subject><subject>Neuropeptides - physiology</subject><subject>Neurosciences</subject><subject>Neurotransmission</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>Plasticity (synaptic)</subject><subject>Presynaptic Terminals - physiology</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>Schizophrenia</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptogenesis</subject><subject>X chromosome</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMotlZ_gBsZ3OgmNu_HUqqtQlWwug7pTCJTpplxMiP035vSiuDC1V3cj3PuPQeAc4xuMEJyHDFBlEOECVSEI8gOwBBzriHGihyCIVKaQimYGoCTGFcIEYKRPAYDQqgWBNMhmD31VVc2lcte68rFzNdtNm3dZ-9CGcbPkwXEWRmyxSbYpivzbNqHvCvrkNlQZHfuy1V1s3ahOwVH3lbRne3nCLxP798mD3D-Mnuc3M5hQzHtILM5YV4gT5koNGe51EsuHJfEqcJjqrzQhaUKFVw7zxWhVCtKWWEFWUrh6Qhc7XSbtk5Hxs6sy5i7qrLB1X00mimNiUi5jMD1v2RKUCnGtBYJvfyDruq-DekPo6kSWmipE3Sxh_rl2hWmacu1bTfmJ8sEkB0Q0yp8uPZXBaOtnTS7wkwqzGwLM4x-Az9dgx8</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Dason, Jeffrey S.</creator><creator>Romero-Pozuelo, Jesús</creator><creator>Atwood, Harold L.</creator><creator>Ferrús, Alberto</creator><general>Humana Press Inc</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</title><author>Dason, Jeffrey S. ; Romero-Pozuelo, Jesús ; Atwood, Harold L. ; Ferrús, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p313t-4ac24f60f346d954c79b56e572e8df138f69da380d59ef5823398334da62b76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Axonogenesis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bipolar disorder</topic><topic>Calcium</topic><topic>Calcium channels</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium-binding protein</topic><topic>Cell Biology</topic><topic>Cell Differentiation - physiology</topic><topic>Drosophila</topic><topic>Freq protein</topic><topic>Humans</topic><topic>Learning</topic><topic>Memory</topic><topic>Mental retardation</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurocognitive Disorders - metabolism</topic><topic>Neurocognitive Disorders - pathology</topic><topic>Neurocognitive Disorders - physiopathology</topic><topic>Neurology</topic><topic>Neuronal Calcium-Sensor Proteins - physiology</topic><topic>Neurons</topic><topic>Neuropeptides - physiology</topic><topic>Neurosciences</topic><topic>Neurotransmission</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>Plasticity (synaptic)</topic><topic>Presynaptic Terminals - physiology</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>Schizophrenia</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptogenesis</topic><topic>X chromosome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dason, Jeffrey S.</creatorcontrib><creatorcontrib>Romero-Pozuelo, Jesús</creatorcontrib><creatorcontrib>Atwood, Harold L.</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dason, Jeffrey S.</au><au>Romero-Pozuelo, Jesús</au><au>Atwood, Harold L.</au><au>Ferrús, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>45</volume><issue>2</issue><spage>388</spage><epage>402</epage><pages>388-402</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila , and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation.</abstract><cop>New York</cop><pub>Humana Press Inc</pub><pmid>22396213</pmid><doi>10.1007/s12035-012-8250-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2012-04, Vol.45 (2), p.388-402
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_948912620
source MEDLINE; SpringerNature Complete Journals
subjects Animals
Axonogenesis
Biomedical and Life Sciences
Biomedicine
Bipolar disorder
Calcium
Calcium channels
Calcium channels (voltage-gated)
Calcium Signaling - physiology
Calcium-binding protein
Cell Biology
Cell Differentiation - physiology
Drosophila
Freq protein
Humans
Learning
Memory
Mental retardation
Nervous system
Neurobiology
Neurocognitive Disorders - metabolism
Neurocognitive Disorders - pathology
Neurocognitive Disorders - physiopathology
Neurology
Neuronal Calcium-Sensor Proteins - physiology
Neurons
Neuropeptides - physiology
Neurosciences
Neurotransmission
Neurotransmitter release
Neurotransmitters
Plasticity (synaptic)
Presynaptic Terminals - physiology
Proteins
Regeneration
Schizophrenia
Synaptic transmission
Synaptic Transmission - physiology
Synaptogenesis
X chromosome
title Multiple Roles for Frequenin/NCS-1 in Synaptic Function and Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Roles%20for%20Frequenin/NCS-1%20in%20Synaptic%20Function%20and%20Development&rft.jtitle=Molecular%20neurobiology&rft.au=Dason,%20Jeffrey%20S.&rft.date=2012-04-01&rft.volume=45&rft.issue=2&rft.spage=388&rft.epage=402&rft.pages=388-402&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-012-8250-4&rft_dat=%3Cproquest_pubme%3E2617009741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=938696979&rft_id=info:pmid/22396213&rfr_iscdi=true