Inverse Batschelet Distributions for Circular Data
We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an appr...
Gespeichert in:
Veröffentlicht in: | Biometrics 2012-03, Vol.68 (1), p.183-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Biometrics |
container_volume | 68 |
creator | Jones, M. C. Pewsey, Arthur |
description | We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated. |
doi_str_mv | 10.1111/j.1541-0420.2011.01651.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_948903962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434051</jstor_id><sourcerecordid>41434051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</originalsourceid><addsrcrecordid>eNqNkcFO4zAURS3ECArMJ4AiNqwSnu1nJ9kgQYG2EgOzqGbYWU7qiIS0ATuB8vc4pNMFq_HGtu55R9Y1IQGFiPp1XkVUIA0BGUQMKI2ASkGj9Q4ZbYNdMgIAGXKkj_vkwLnKX1MBbI_sM4bIucARYbPVm7HOBFe6dfmTqU0bXJeutWXWtWWzckHR2GBc2ryrtQ2udauPyI9C18783OyHZH57Mx9Pw7uHyWx8eRfmgjEaJhmKJIaCw4IxoalcFIACdZFlOtVxnIo0M0We5DJGqbXPMmRIC5nkC22AH5KzQftim9fOuFYtS5ebutYr03ROpZikwFPJPHn6jayazq782zyEVDAUsYeSAcpt45w1hXqx5VLbD0VB9aWqSvXdqb471ZeqvkpVaz96svF32dIstoP_WvTAxQC8l7X5-G-xupo9_OqPXnA8CCrXNnYrQIoc4SsPh9z_jFlvc22flYx5LNTf-4lK_9Df08kclOSfsUycJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>944152457</pqid></control><display><type>article</type><title>Inverse Batschelet Distributions for Circular Data</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Jones, M. C. ; Pewsey, Arthur</creator><creatorcontrib>Jones, M. C. ; Pewsey, Arthur</creatorcontrib><description>We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2011.01651.x</identifier><identifier>PMID: 22443354</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BIOMETRIC METHODOLOGY ; Biometrics ; Biometry - methods ; Cardioids ; Circles ; Circular statistics ; Computer Simulation ; Data Interpretation, Statistical ; Data models ; Drosophila ; Flat-topped ; Inverse problems ; Larvae ; Models, Statistical ; Parameter estimation ; Parameter orthogonality ; Parametric models ; Probability distribution ; Skew distributions ; Skewed distribution ; Statistical Distributions ; Sudden infant death syndrome ; Symmetry ; Transformation of scale ; Unimodality ; von Mises distribution</subject><ispartof>Biometrics, 2012-03, Vol.68 (1), p.183-193</ispartof><rights>2012 International Biometric Society</rights><rights>2011, The International Biometric Society</rights><rights>2011, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</citedby><cites>FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434051$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434051$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,1419,27931,27932,45581,45582,58024,58028,58257,58261</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22443354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, M. C.</creatorcontrib><creatorcontrib>Pewsey, Arthur</creatorcontrib><title>Inverse Batschelet Distributions for Circular Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.</description><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Cardioids</subject><subject>Circles</subject><subject>Circular statistics</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Data models</subject><subject>Drosophila</subject><subject>Flat-topped</subject><subject>Inverse problems</subject><subject>Larvae</subject><subject>Models, Statistical</subject><subject>Parameter estimation</subject><subject>Parameter orthogonality</subject><subject>Parametric models</subject><subject>Probability distribution</subject><subject>Skew distributions</subject><subject>Skewed distribution</subject><subject>Statistical Distributions</subject><subject>Sudden infant death syndrome</subject><subject>Symmetry</subject><subject>Transformation of scale</subject><subject>Unimodality</subject><subject>von Mises distribution</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO4zAURS3ECArMJ4AiNqwSnu1nJ9kgQYG2EgOzqGbYWU7qiIS0ATuB8vc4pNMFq_HGtu55R9Y1IQGFiPp1XkVUIA0BGUQMKI2ASkGj9Q4ZbYNdMgIAGXKkj_vkwLnKX1MBbI_sM4bIucARYbPVm7HOBFe6dfmTqU0bXJeutWXWtWWzckHR2GBc2ryrtQ2udauPyI9C18783OyHZH57Mx9Pw7uHyWx8eRfmgjEaJhmKJIaCw4IxoalcFIACdZFlOtVxnIo0M0We5DJGqbXPMmRIC5nkC22AH5KzQftim9fOuFYtS5ebutYr03ROpZikwFPJPHn6jayazq782zyEVDAUsYeSAcpt45w1hXqx5VLbD0VB9aWqSvXdqb471ZeqvkpVaz96svF32dIstoP_WvTAxQC8l7X5-G-xupo9_OqPXnA8CCrXNnYrQIoc4SsPh9z_jFlvc22flYx5LNTf-4lK_9Df08kclOSfsUycJA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Jones, M. C.</creator><creator>Pewsey, Arthur</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Inverse Batschelet Distributions for Circular Data</title><author>Jones, M. C. ; Pewsey, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Cardioids</topic><topic>Circles</topic><topic>Circular statistics</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Data models</topic><topic>Drosophila</topic><topic>Flat-topped</topic><topic>Inverse problems</topic><topic>Larvae</topic><topic>Models, Statistical</topic><topic>Parameter estimation</topic><topic>Parameter orthogonality</topic><topic>Parametric models</topic><topic>Probability distribution</topic><topic>Skew distributions</topic><topic>Skewed distribution</topic><topic>Statistical Distributions</topic><topic>Sudden infant death syndrome</topic><topic>Symmetry</topic><topic>Transformation of scale</topic><topic>Unimodality</topic><topic>von Mises distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, M. C.</creatorcontrib><creatorcontrib>Pewsey, Arthur</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, M. C.</au><au>Pewsey, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Batschelet Distributions for Circular Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2012-03</date><risdate>2012</risdate><volume>68</volume><issue>1</issue><spage>183</spage><epage>193</epage><pages>183-193</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22443354</pmid><doi>10.1111/j.1541-0420.2011.01651.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2012-03, Vol.68 (1), p.183-193 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_948903962 |
source | MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | BIOMETRIC METHODOLOGY Biometrics Biometry - methods Cardioids Circles Circular statistics Computer Simulation Data Interpretation, Statistical Data models Drosophila Flat-topped Inverse problems Larvae Models, Statistical Parameter estimation Parameter orthogonality Parametric models Probability distribution Skew distributions Skewed distribution Statistical Distributions Sudden infant death syndrome Symmetry Transformation of scale Unimodality von Mises distribution |
title | Inverse Batschelet Distributions for Circular Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Batschelet%20Distributions%20for%20Circular%20Data&rft.jtitle=Biometrics&rft.au=Jones,%20M.%20C.&rft.date=2012-03&rft.volume=68&rft.issue=1&rft.spage=183&rft.epage=193&rft.pages=183-193&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2011.01651.x&rft_dat=%3Cjstor_proqu%3E41434051%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=944152457&rft_id=info:pmid/22443354&rft_jstor_id=41434051&rfr_iscdi=true |