Inverse Batschelet Distributions for Circular Data

We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2012-03, Vol.68 (1), p.183-193
Hauptverfasser: Jones, M. C., Pewsey, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 183
container_title Biometrics
container_volume 68
creator Jones, M. C.
Pewsey, Arthur
description We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.
doi_str_mv 10.1111/j.1541-0420.2011.01651.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_948903962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434051</jstor_id><sourcerecordid>41434051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</originalsourceid><addsrcrecordid>eNqNkcFO4zAURS3ECArMJ4AiNqwSnu1nJ9kgQYG2EgOzqGbYWU7qiIS0ATuB8vc4pNMFq_HGtu55R9Y1IQGFiPp1XkVUIA0BGUQMKI2ASkGj9Q4ZbYNdMgIAGXKkj_vkwLnKX1MBbI_sM4bIucARYbPVm7HOBFe6dfmTqU0bXJeutWXWtWWzckHR2GBc2ryrtQ2udauPyI9C18783OyHZH57Mx9Pw7uHyWx8eRfmgjEaJhmKJIaCw4IxoalcFIACdZFlOtVxnIo0M0We5DJGqbXPMmRIC5nkC22AH5KzQftim9fOuFYtS5ebutYr03ROpZikwFPJPHn6jayazq782zyEVDAUsYeSAcpt45w1hXqx5VLbD0VB9aWqSvXdqb471ZeqvkpVaz96svF32dIstoP_WvTAxQC8l7X5-G-xupo9_OqPXnA8CCrXNnYrQIoc4SsPh9z_jFlvc22flYx5LNTf-4lK_9Df08kclOSfsUycJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>944152457</pqid></control><display><type>article</type><title>Inverse Batschelet Distributions for Circular Data</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Jones, M. C. ; Pewsey, Arthur</creator><creatorcontrib>Jones, M. C. ; Pewsey, Arthur</creatorcontrib><description>We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2011.01651.x</identifier><identifier>PMID: 22443354</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BIOMETRIC METHODOLOGY ; Biometrics ; Biometry - methods ; Cardioids ; Circles ; Circular statistics ; Computer Simulation ; Data Interpretation, Statistical ; Data models ; Drosophila ; Flat-topped ; Inverse problems ; Larvae ; Models, Statistical ; Parameter estimation ; Parameter orthogonality ; Parametric models ; Probability distribution ; Skew distributions ; Skewed distribution ; Statistical Distributions ; Sudden infant death syndrome ; Symmetry ; Transformation of scale ; Unimodality ; von Mises distribution</subject><ispartof>Biometrics, 2012-03, Vol.68 (1), p.183-193</ispartof><rights>2012 International Biometric Society</rights><rights>2011, The International Biometric Society</rights><rights>2011, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</citedby><cites>FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434051$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434051$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,1419,27931,27932,45581,45582,58024,58028,58257,58261</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22443354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, M. C.</creatorcontrib><creatorcontrib>Pewsey, Arthur</creatorcontrib><title>Inverse Batschelet Distributions for Circular Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.</description><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Cardioids</subject><subject>Circles</subject><subject>Circular statistics</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Data models</subject><subject>Drosophila</subject><subject>Flat-topped</subject><subject>Inverse problems</subject><subject>Larvae</subject><subject>Models, Statistical</subject><subject>Parameter estimation</subject><subject>Parameter orthogonality</subject><subject>Parametric models</subject><subject>Probability distribution</subject><subject>Skew distributions</subject><subject>Skewed distribution</subject><subject>Statistical Distributions</subject><subject>Sudden infant death syndrome</subject><subject>Symmetry</subject><subject>Transformation of scale</subject><subject>Unimodality</subject><subject>von Mises distribution</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO4zAURS3ECArMJ4AiNqwSnu1nJ9kgQYG2EgOzqGbYWU7qiIS0ATuB8vc4pNMFq_HGtu55R9Y1IQGFiPp1XkVUIA0BGUQMKI2ASkGj9Q4ZbYNdMgIAGXKkj_vkwLnKX1MBbI_sM4bIucARYbPVm7HOBFe6dfmTqU0bXJeutWXWtWWzckHR2GBc2ryrtQ2udauPyI9C18783OyHZH57Mx9Pw7uHyWx8eRfmgjEaJhmKJIaCw4IxoalcFIACdZFlOtVxnIo0M0We5DJGqbXPMmRIC5nkC22AH5KzQftim9fOuFYtS5ebutYr03ROpZikwFPJPHn6jayazq782zyEVDAUsYeSAcpt45w1hXqx5VLbD0VB9aWqSvXdqb471ZeqvkpVaz96svF32dIstoP_WvTAxQC8l7X5-G-xupo9_OqPXnA8CCrXNnYrQIoc4SsPh9z_jFlvc22flYx5LNTf-4lK_9Df08kclOSfsUycJA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Jones, M. C.</creator><creator>Pewsey, Arthur</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Inverse Batschelet Distributions for Circular Data</title><author>Jones, M. C. ; Pewsey, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5221-8b45870f30d225a16df0454afbba9a77959befc8c6746aa045b4241f68cdae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Cardioids</topic><topic>Circles</topic><topic>Circular statistics</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Data models</topic><topic>Drosophila</topic><topic>Flat-topped</topic><topic>Inverse problems</topic><topic>Larvae</topic><topic>Models, Statistical</topic><topic>Parameter estimation</topic><topic>Parameter orthogonality</topic><topic>Parametric models</topic><topic>Probability distribution</topic><topic>Skew distributions</topic><topic>Skewed distribution</topic><topic>Statistical Distributions</topic><topic>Sudden infant death syndrome</topic><topic>Symmetry</topic><topic>Transformation of scale</topic><topic>Unimodality</topic><topic>von Mises distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, M. C.</creatorcontrib><creatorcontrib>Pewsey, Arthur</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, M. C.</au><au>Pewsey, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Batschelet Distributions for Circular Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2012-03</date><risdate>2012</risdate><volume>68</volume><issue>1</issue><spage>183</spage><epage>193</epage><pages>183-193</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We provide four-parameter families of distributions on the circle which are unimodal and display the widest ranges of both skewness and peakedness yet available. Our approach is to transform the scale of a generating distribution, such as the von Mises, using various nontrivial extensions of an approach first used in Batschelet's (1981, Circular Statistics in Biology) book. The key is to employ inverses of Batschelet-type transformations in certain ways; these exhibit considerable advantages over direct Batschelet transformations. The skewness transformation is especially appealing as it has no effect on the normalizing constant. As well as a variety of interesting theoretical properties, when likelihood inference is explored these distributions display orthogonality between elements of a pairing of parameters into (location, skewness) and (concentration, peakedness). Further, the location parameter can sometimes be made approximately orthogonal to all the other parameters. Profile likelihoods come to the fore in practice. Two illustrative applications, one concerning the locomotion of a Drosophila fly larva, the other analyzing a large set of sudden infant death syndrome data, are investigated.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22443354</pmid><doi>10.1111/j.1541-0420.2011.01651.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2012-03, Vol.68 (1), p.183-193
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_948903962
source MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects BIOMETRIC METHODOLOGY
Biometrics
Biometry - methods
Cardioids
Circles
Circular statistics
Computer Simulation
Data Interpretation, Statistical
Data models
Drosophila
Flat-topped
Inverse problems
Larvae
Models, Statistical
Parameter estimation
Parameter orthogonality
Parametric models
Probability distribution
Skew distributions
Skewed distribution
Statistical Distributions
Sudden infant death syndrome
Symmetry
Transformation of scale
Unimodality
von Mises distribution
title Inverse Batschelet Distributions for Circular Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Batschelet%20Distributions%20for%20Circular%20Data&rft.jtitle=Biometrics&rft.au=Jones,%20M.%20C.&rft.date=2012-03&rft.volume=68&rft.issue=1&rft.spage=183&rft.epage=193&rft.pages=183-193&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2011.01651.x&rft_dat=%3Cjstor_proqu%3E41434051%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=944152457&rft_id=info:pmid/22443354&rft_jstor_id=41434051&rfr_iscdi=true