Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain
In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2012-03, Vol.51 (9), p.1188-1197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1197 |
---|---|
container_issue | 9 |
container_start_page | 1188 |
container_title | Applied optics (2004) |
container_volume | 51 |
creator | Dennison, Christopher R Wild, Peter M |
description | In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the sensor with respect to contact forces. A combination of plane elasticity and strain-optic models is used to predict sensor performance in terms of sensitivity to contact force and axial strain. Model predictions are validated through experimental calibration and indicate contact force, axial strain, and temperature sensitivities of 169.6 pm/(N/mm), 0.01 pm/με, and -1.12 pm/°C in terms of spectral separation. The sensor addresses challenges associated with contact force sensors that are based on FBGs in birefringent fiber, FBGs in conventional optical fiber, and tilted FBGs. Relative to other birefringent fiber sensors, the sensor has contact force sensitivity comparable to the highest sensitivity of commercially available birefringent fibers and, unlike other birefringent fiber sensors, is self-aligning with respect to contact forces. Unlike sensors based on Bragg gratings in conventional fiber and tilted Bragg gratings, the sensor has minimal cosensitivity to both axial strain and changes in temperature. |
doi_str_mv | 10.1364/AO.51.001188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_948887898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1022908280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-123f5fef46ffbb35dc8c02dacc81cb66f0b2b1879eb7dc29c167472e7fe6cb863</originalsourceid><addsrcrecordid>eNp90T1LAzEYwPEgiq3VzVmy6eDVvF0uN5biGxQ6qOB2JLkEo_dmklP77U2pOjolhB9_wvMAcIrRHFPOrhbreY7nCGEsxB6YEpznGcU83wfTdC0zTMTzBByF8IoQzVlZHIIJIYxhxvEUvD2Mg_Eh-lHH0ZsaWqeMz_ohOg1130WpI7S91wYG04Xew08XX2DrOtfKJontq4vuw8UNjD2Mpk09uW1B2dVQfrnEUl-67hgcWNkEc_JzzsDTzfXj8i5brW_vl4tVpimhMX2Y2tway7i1StG81kIjUkutBdaKc4sUUVgUpVFFrUmpMS9YQUxhDddKcDoD57vu4Pv30YRYtS5o0zSyM_0YqpIJIQpRiiQv_pUYEVIiQQRK9HJHte9D8MZWg08j8JuEqu0iqsW6ynG1W0TiZz_lUbWm_sO_k6ffdp2GSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022908280</pqid></control><display><type>article</type><title>Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Dennison, Christopher R ; Wild, Peter M</creator><creatorcontrib>Dennison, Christopher R ; Wild, Peter M</creatorcontrib><description>In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the sensor with respect to contact forces. A combination of plane elasticity and strain-optic models is used to predict sensor performance in terms of sensitivity to contact force and axial strain. Model predictions are validated through experimental calibration and indicate contact force, axial strain, and temperature sensitivities of 169.6 pm/(N/mm), 0.01 pm/με, and -1.12 pm/°C in terms of spectral separation. The sensor addresses challenges associated with contact force sensors that are based on FBGs in birefringent fiber, FBGs in conventional optical fiber, and tilted FBGs. Relative to other birefringent fiber sensors, the sensor has contact force sensitivity comparable to the highest sensitivity of commercially available birefringent fibers and, unlike other birefringent fiber sensors, is self-aligning with respect to contact forces. Unlike sensors based on Bragg gratings in conventional fiber and tilted Bragg gratings, the sensor has minimal cosensitivity to both axial strain and changes in temperature.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.51.001188</identifier><identifier>PMID: 22441461</identifier><language>eng</language><publisher>United States</publisher><subject>Axial strain ; Bragg gratings ; Contact ; Contact force ; Fiber optics ; Fibers ; Optical fibers ; Sensors</subject><ispartof>Applied optics (2004), 2012-03, Vol.51 (9), p.1188-1197</ispartof><rights>2012 Optical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-123f5fef46ffbb35dc8c02dacc81cb66f0b2b1879eb7dc29c167472e7fe6cb863</citedby><cites>FETCH-LOGICAL-c323t-123f5fef46ffbb35dc8c02dacc81cb66f0b2b1879eb7dc29c167472e7fe6cb863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22441461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dennison, Christopher R</creatorcontrib><creatorcontrib>Wild, Peter M</creatorcontrib><title>Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the sensor with respect to contact forces. A combination of plane elasticity and strain-optic models is used to predict sensor performance in terms of sensitivity to contact force and axial strain. Model predictions are validated through experimental calibration and indicate contact force, axial strain, and temperature sensitivities of 169.6 pm/(N/mm), 0.01 pm/με, and -1.12 pm/°C in terms of spectral separation. The sensor addresses challenges associated with contact force sensors that are based on FBGs in birefringent fiber, FBGs in conventional optical fiber, and tilted FBGs. Relative to other birefringent fiber sensors, the sensor has contact force sensitivity comparable to the highest sensitivity of commercially available birefringent fibers and, unlike other birefringent fiber sensors, is self-aligning with respect to contact forces. Unlike sensors based on Bragg gratings in conventional fiber and tilted Bragg gratings, the sensor has minimal cosensitivity to both axial strain and changes in temperature.</description><subject>Axial strain</subject><subject>Bragg gratings</subject><subject>Contact</subject><subject>Contact force</subject><subject>Fiber optics</subject><subject>Fibers</subject><subject>Optical fibers</subject><subject>Sensors</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90T1LAzEYwPEgiq3VzVmy6eDVvF0uN5biGxQ6qOB2JLkEo_dmklP77U2pOjolhB9_wvMAcIrRHFPOrhbreY7nCGEsxB6YEpznGcU83wfTdC0zTMTzBByF8IoQzVlZHIIJIYxhxvEUvD2Mg_Eh-lHH0ZsaWqeMz_ohOg1130WpI7S91wYG04Xew08XX2DrOtfKJontq4vuw8UNjD2Mpk09uW1B2dVQfrnEUl-67hgcWNkEc_JzzsDTzfXj8i5brW_vl4tVpimhMX2Y2tway7i1StG81kIjUkutBdaKc4sUUVgUpVFFrUmpMS9YQUxhDddKcDoD57vu4Pv30YRYtS5o0zSyM_0YqpIJIQpRiiQv_pUYEVIiQQRK9HJHte9D8MZWg08j8JuEqu0iqsW6ynG1W0TiZz_lUbWm_sO_k6ffdp2GSg</recordid><startdate>20120320</startdate><enddate>20120320</enddate><creator>Dennison, Christopher R</creator><creator>Wild, Peter M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120320</creationdate><title>Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain</title><author>Dennison, Christopher R ; Wild, Peter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-123f5fef46ffbb35dc8c02dacc81cb66f0b2b1879eb7dc29c167472e7fe6cb863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Axial strain</topic><topic>Bragg gratings</topic><topic>Contact</topic><topic>Contact force</topic><topic>Fiber optics</topic><topic>Fibers</topic><topic>Optical fibers</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dennison, Christopher R</creatorcontrib><creatorcontrib>Wild, Peter M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dennison, Christopher R</au><au>Wild, Peter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2012-03-20</date><risdate>2012</risdate><volume>51</volume><issue>9</issue><spage>1188</spage><epage>1197</epage><pages>1188-1197</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>In this work a new superstructured, in-fiber Bragg grating (FBG)-based, contact force sensor is presented that is based on birefringent D-shape optical fiber. The sensor superstructure comprises a polyimide sheath, a stress-concentrating feature, and an alignment feature that repeatably orients the sensor with respect to contact forces. A combination of plane elasticity and strain-optic models is used to predict sensor performance in terms of sensitivity to contact force and axial strain. Model predictions are validated through experimental calibration and indicate contact force, axial strain, and temperature sensitivities of 169.6 pm/(N/mm), 0.01 pm/με, and -1.12 pm/°C in terms of spectral separation. The sensor addresses challenges associated with contact force sensors that are based on FBGs in birefringent fiber, FBGs in conventional optical fiber, and tilted FBGs. Relative to other birefringent fiber sensors, the sensor has contact force sensitivity comparable to the highest sensitivity of commercially available birefringent fibers and, unlike other birefringent fiber sensors, is self-aligning with respect to contact forces. Unlike sensors based on Bragg gratings in conventional fiber and tilted Bragg gratings, the sensor has minimal cosensitivity to both axial strain and changes in temperature.</abstract><cop>United States</cop><pmid>22441461</pmid><doi>10.1364/AO.51.001188</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2012-03, Vol.51 (9), p.1188-1197 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_948887898 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Axial strain Bragg gratings Contact Contact force Fiber optics Fibers Optical fibers Sensors |
title | Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superstructured%20fiber-optic%20contact%20force%20sensor%20with%20minimal%20cosensitivity%20to%20temperature%20and%20axial%20strain&rft.jtitle=Applied%20optics%20(2004)&rft.au=Dennison,%20Christopher%20R&rft.date=2012-03-20&rft.volume=51&rft.issue=9&rft.spage=1188&rft.epage=1197&rft.pages=1188-1197&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.51.001188&rft_dat=%3Cproquest_cross%3E1022908280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022908280&rft_id=info:pmid/22441461&rfr_iscdi=true |