A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES
This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample...
Gespeichert in:
Veröffentlicht in: | International economic review (Philadelphia) 2010-11, Vol.51 (4), p.925-958 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 4 |
container_start_page | 925 |
container_title | International economic review (Philadelphia) |
container_volume | 51 |
creator | Keane, Michael P. Sauer, Robert M. |
description | This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions. |
doi_str_mv | 10.1111/j.1468-2354.2010.00606.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_940979171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40929497</jstor_id><sourcerecordid>40929497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</originalsourceid><addsrcrecordid>eNqNkbtu2zAYhYWiBeomfYQCRJdOcnkVqaEDLdGKAF0MXRJkImRVAqw6cSLaqLP3wUtFgYdO5cIfPN8hD3EcByC4RHZ9H5aIesLFhNElhvYUQg96y_M7Z3ER3jsLCDF0PeaLj84nYwZoKUL5wvkjQZCnm7qSVZxnMknuwaaQQRUHMgFlnNbJqwBUWcXpPMokyou4uknBOi9AeJ_JNA7ARmYqAaGsJEjzUCUluLMMqLN8VariVoVAZWEeqSyvS1Da5xS4lUUsV4kqr50PfbM33ee3_cqp16oKbtwkj6YgbssQ8VzGad9hTCnGDRWwZaQVHeSMeS3dbtmWcC56xFrOm95HuBHop2CkEaKn2571nFw53-Z7n8bD86kzR_2wM2233zeP3eFktE-hz33EkSW__kMOh9P4aMNpgRj2BUOehcQMtePBmLHr9dO4e2jGF42gnsrRg5460FMHeipHv5ajz9b6Y7b-3u27l__26VgVyk7W_2X2D-Z4GC9-mx_71J9-6s76zhy780Vvxl_a44QzfZdFepVEa4QJ1xH5C-uiofE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815298516</pqid></control><display><type>article</type><title>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><creator>Keane, Michael P. ; Sauer, Robert M.</creator><creatorcontrib>Keane, Michael P. ; Sauer, Robert M.</creatorcontrib><description>This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.</description><identifier>ISSN: 0020-6598</identifier><identifier>EISSN: 1468-2354</identifier><identifier>DOI: 10.1111/j.1468-2354.2010.00606.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Computational methods ; Data models ; Decision making ; Dynamic models ; Economic models ; Education ; Error rates ; Estimating techniques ; Estimation bias ; Female labour ; Females ; Labor economics ; Labor supply ; Labour supply ; Markov models ; Modeling ; Observed choices ; Parametric models ; Preliminary estimates ; Race ; Sampling bias ; Simulation ; Simulations ; Standard deviation ; Statistical models ; Studies</subject><ispartof>International economic review (Philadelphia), 2010-11, Vol.51 (4), p.925-958</ispartof><rights>Copyright © 2010 Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association</rights><rights>(2010) by the Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</citedby><cites>FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40929497$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40929497$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,27928,27929,45578,45579,58021,58254</link.rule.ids></links><search><creatorcontrib>Keane, Michael P.</creatorcontrib><creatorcontrib>Sauer, Robert M.</creatorcontrib><title>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</title><title>International economic review (Philadelphia)</title><description>This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.</description><subject>Algorithms</subject><subject>Computational methods</subject><subject>Data models</subject><subject>Decision making</subject><subject>Dynamic models</subject><subject>Economic models</subject><subject>Education</subject><subject>Error rates</subject><subject>Estimating techniques</subject><subject>Estimation bias</subject><subject>Female labour</subject><subject>Females</subject><subject>Labor economics</subject><subject>Labor supply</subject><subject>Labour supply</subject><subject>Markov models</subject><subject>Modeling</subject><subject>Observed choices</subject><subject>Parametric models</subject><subject>Preliminary estimates</subject><subject>Race</subject><subject>Sampling bias</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Standard deviation</subject><subject>Statistical models</subject><subject>Studies</subject><issn>0020-6598</issn><issn>1468-2354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkbtu2zAYhYWiBeomfYQCRJdOcnkVqaEDLdGKAF0MXRJkImRVAqw6cSLaqLP3wUtFgYdO5cIfPN8hD3EcByC4RHZ9H5aIesLFhNElhvYUQg96y_M7Z3ER3jsLCDF0PeaLj84nYwZoKUL5wvkjQZCnm7qSVZxnMknuwaaQQRUHMgFlnNbJqwBUWcXpPMokyou4uknBOi9AeJ_JNA7ARmYqAaGsJEjzUCUluLMMqLN8VariVoVAZWEeqSyvS1Da5xS4lUUsV4kqr50PfbM33ee3_cqp16oKbtwkj6YgbssQ8VzGad9hTCnGDRWwZaQVHeSMeS3dbtmWcC56xFrOm95HuBHop2CkEaKn2571nFw53-Z7n8bD86kzR_2wM2233zeP3eFktE-hz33EkSW__kMOh9P4aMNpgRj2BUOehcQMtePBmLHr9dO4e2jGF42gnsrRg5460FMHeipHv5ajz9b6Y7b-3u27l__26VgVyk7W_2X2D-Z4GC9-mx_71J9-6s76zhy780Vvxl_a44QzfZdFepVEa4QJ1xH5C-uiofE</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Keane, Michael P.</creator><creator>Sauer, Robert M.</creator><general>Blackwell Publishing Inc</general><general>Wiley Periodicals on behalf of the Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201011</creationdate><title>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</title><author>Keane, Michael P. ; Sauer, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computational methods</topic><topic>Data models</topic><topic>Decision making</topic><topic>Dynamic models</topic><topic>Economic models</topic><topic>Education</topic><topic>Error rates</topic><topic>Estimating techniques</topic><topic>Estimation bias</topic><topic>Female labour</topic><topic>Females</topic><topic>Labor economics</topic><topic>Labor supply</topic><topic>Labour supply</topic><topic>Markov models</topic><topic>Modeling</topic><topic>Observed choices</topic><topic>Parametric models</topic><topic>Preliminary estimates</topic><topic>Race</topic><topic>Sampling bias</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Standard deviation</topic><topic>Statistical models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keane, Michael P.</creatorcontrib><creatorcontrib>Sauer, Robert M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International economic review (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keane, Michael P.</au><au>Sauer, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</atitle><jtitle>International economic review (Philadelphia)</jtitle><date>2010-11</date><risdate>2010</risdate><volume>51</volume><issue>4</issue><spage>925</spage><epage>958</epage><pages>925-958</pages><issn>0020-6598</issn><eissn>1468-2354</eissn><abstract>This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1468-2354.2010.00606.x</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-6598 |
ispartof | International economic review (Philadelphia), 2010-11, Vol.51 (4), p.925-958 |
issn | 0020-6598 1468-2354 |
language | eng |
recordid | cdi_proquest_miscellaneous_940979171 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library; Jstor Complete Legacy |
subjects | Algorithms Computational methods Data models Decision making Dynamic models Economic models Education Error rates Estimating techniques Estimation bias Female labour Females Labor economics Labor supply Labour supply Markov models Modeling Observed choices Parametric models Preliminary estimates Race Sampling bias Simulation Simulations Standard deviation Statistical models Studies |
title | A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COMPUTATIONALLY%20PRACTICAL%20SIMULATION%20ESTIMATION%20ALGORITHM%20FOR%20DYNAMIC%20PANEL%20DATA%20MODELS%20WITH%20UNOBSERVED%20ENDOGENOUS%20STATE%20VARIABLES&rft.jtitle=International%20economic%20review%20(Philadelphia)&rft.au=Keane,%20Michael%20P.&rft.date=2010-11&rft.volume=51&rft.issue=4&rft.spage=925&rft.epage=958&rft.pages=925-958&rft.issn=0020-6598&rft.eissn=1468-2354&rft_id=info:doi/10.1111/j.1468-2354.2010.00606.x&rft_dat=%3Cjstor_proqu%3E40929497%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815298516&rft_id=info:pmid/&rft_jstor_id=40929497&rfr_iscdi=true |