A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES

This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International economic review (Philadelphia) 2010-11, Vol.51 (4), p.925-958
Hauptverfasser: Keane, Michael P., Sauer, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 4
container_start_page 925
container_title International economic review (Philadelphia)
container_volume 51
creator Keane, Michael P.
Sauer, Robert M.
description This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.
doi_str_mv 10.1111/j.1468-2354.2010.00606.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_940979171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40929497</jstor_id><sourcerecordid>40929497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</originalsourceid><addsrcrecordid>eNqNkbtu2zAYhYWiBeomfYQCRJdOcnkVqaEDLdGKAF0MXRJkImRVAqw6cSLaqLP3wUtFgYdO5cIfPN8hD3EcByC4RHZ9H5aIesLFhNElhvYUQg96y_M7Z3ER3jsLCDF0PeaLj84nYwZoKUL5wvkjQZCnm7qSVZxnMknuwaaQQRUHMgFlnNbJqwBUWcXpPMokyou4uknBOi9AeJ_JNA7ARmYqAaGsJEjzUCUluLMMqLN8VariVoVAZWEeqSyvS1Da5xS4lUUsV4kqr50PfbM33ee3_cqp16oKbtwkj6YgbssQ8VzGad9hTCnGDRWwZaQVHeSMeS3dbtmWcC56xFrOm95HuBHop2CkEaKn2571nFw53-Z7n8bD86kzR_2wM2233zeP3eFktE-hz33EkSW__kMOh9P4aMNpgRj2BUOehcQMtePBmLHr9dO4e2jGF42gnsrRg5460FMHeipHv5ajz9b6Y7b-3u27l__26VgVyk7W_2X2D-Z4GC9-mx_71J9-6s76zhy780Vvxl_a44QzfZdFepVEa4QJ1xH5C-uiofE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815298516</pqid></control><display><type>article</type><title>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><creator>Keane, Michael P. ; Sauer, Robert M.</creator><creatorcontrib>Keane, Michael P. ; Sauer, Robert M.</creatorcontrib><description>This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.</description><identifier>ISSN: 0020-6598</identifier><identifier>EISSN: 1468-2354</identifier><identifier>DOI: 10.1111/j.1468-2354.2010.00606.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Algorithms ; Computational methods ; Data models ; Decision making ; Dynamic models ; Economic models ; Education ; Error rates ; Estimating techniques ; Estimation bias ; Female labour ; Females ; Labor economics ; Labor supply ; Labour supply ; Markov models ; Modeling ; Observed choices ; Parametric models ; Preliminary estimates ; Race ; Sampling bias ; Simulation ; Simulations ; Standard deviation ; Statistical models ; Studies</subject><ispartof>International economic review (Philadelphia), 2010-11, Vol.51 (4), p.925-958</ispartof><rights>Copyright © 2010 Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association</rights><rights>(2010) by the Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</citedby><cites>FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40929497$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40929497$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,27928,27929,45578,45579,58021,58254</link.rule.ids></links><search><creatorcontrib>Keane, Michael P.</creatorcontrib><creatorcontrib>Sauer, Robert M.</creatorcontrib><title>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</title><title>International economic review (Philadelphia)</title><description>This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.</description><subject>Algorithms</subject><subject>Computational methods</subject><subject>Data models</subject><subject>Decision making</subject><subject>Dynamic models</subject><subject>Economic models</subject><subject>Education</subject><subject>Error rates</subject><subject>Estimating techniques</subject><subject>Estimation bias</subject><subject>Female labour</subject><subject>Females</subject><subject>Labor economics</subject><subject>Labor supply</subject><subject>Labour supply</subject><subject>Markov models</subject><subject>Modeling</subject><subject>Observed choices</subject><subject>Parametric models</subject><subject>Preliminary estimates</subject><subject>Race</subject><subject>Sampling bias</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Standard deviation</subject><subject>Statistical models</subject><subject>Studies</subject><issn>0020-6598</issn><issn>1468-2354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkbtu2zAYhYWiBeomfYQCRJdOcnkVqaEDLdGKAF0MXRJkImRVAqw6cSLaqLP3wUtFgYdO5cIfPN8hD3EcByC4RHZ9H5aIesLFhNElhvYUQg96y_M7Z3ER3jsLCDF0PeaLj84nYwZoKUL5wvkjQZCnm7qSVZxnMknuwaaQQRUHMgFlnNbJqwBUWcXpPMokyou4uknBOi9AeJ_JNA7ARmYqAaGsJEjzUCUluLMMqLN8VariVoVAZWEeqSyvS1Da5xS4lUUsV4kqr50PfbM33ee3_cqp16oKbtwkj6YgbssQ8VzGad9hTCnGDRWwZaQVHeSMeS3dbtmWcC56xFrOm95HuBHop2CkEaKn2571nFw53-Z7n8bD86kzR_2wM2233zeP3eFktE-hz33EkSW__kMOh9P4aMNpgRj2BUOehcQMtePBmLHr9dO4e2jGF42gnsrRg5460FMHeipHv5ajz9b6Y7b-3u27l__26VgVyk7W_2X2D-Z4GC9-mx_71J9-6s76zhy780Vvxl_a44QzfZdFepVEa4QJ1xH5C-uiofE</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Keane, Michael P.</creator><creator>Sauer, Robert M.</creator><general>Blackwell Publishing Inc</general><general>Wiley Periodicals on behalf of the Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201011</creationdate><title>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</title><author>Keane, Michael P. ; Sauer, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5136-574fe224422a480c53c8e07556c4bb5b3778f15c77af912a81d853a88f4bf5f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computational methods</topic><topic>Data models</topic><topic>Decision making</topic><topic>Dynamic models</topic><topic>Economic models</topic><topic>Education</topic><topic>Error rates</topic><topic>Estimating techniques</topic><topic>Estimation bias</topic><topic>Female labour</topic><topic>Females</topic><topic>Labor economics</topic><topic>Labor supply</topic><topic>Labour supply</topic><topic>Markov models</topic><topic>Modeling</topic><topic>Observed choices</topic><topic>Parametric models</topic><topic>Preliminary estimates</topic><topic>Race</topic><topic>Sampling bias</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Standard deviation</topic><topic>Statistical models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keane, Michael P.</creatorcontrib><creatorcontrib>Sauer, Robert M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International economic review (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keane, Michael P.</au><au>Sauer, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES</atitle><jtitle>International economic review (Philadelphia)</jtitle><date>2010-11</date><risdate>2010</risdate><volume>51</volume><issue>4</issue><spage>925</spage><epage>958</epage><pages>925-958</pages><issn>0020-6598</issn><eissn>1468-2354</eissn><abstract>This article develops a simulation estimation algorithm that is particularly useful for estimating dynamic panel data models with unobserved endogenous state variables. Repeated sampling experiments on dynamic probit models with serially correlated errors indicate the estimator has good small sample properties. We apply the estimator to a model of female labor supply and show that the rarely used Polya model fits the data substantially better than the popular Markov model. The Polya model also produces far less state dependence and many fewer race effects and much stronger effects of education, young children, and husband's income on female labor supply decisions.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1468-2354.2010.00606.x</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-6598
ispartof International economic review (Philadelphia), 2010-11, Vol.51 (4), p.925-958
issn 0020-6598
1468-2354
language eng
recordid cdi_proquest_miscellaneous_940979171
source EBSCOhost Business Source Complete; Access via Wiley Online Library; Jstor Complete Legacy
subjects Algorithms
Computational methods
Data models
Decision making
Dynamic models
Economic models
Education
Error rates
Estimating techniques
Estimation bias
Female labour
Females
Labor economics
Labor supply
Labour supply
Markov models
Modeling
Observed choices
Parametric models
Preliminary estimates
Race
Sampling bias
Simulation
Simulations
Standard deviation
Statistical models
Studies
title A COMPUTATIONALLY PRACTICAL SIMULATION ESTIMATION ALGORITHM FOR DYNAMIC PANEL DATA MODELS WITH UNOBSERVED ENDOGENOUS STATE VARIABLES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COMPUTATIONALLY%20PRACTICAL%20SIMULATION%20ESTIMATION%20ALGORITHM%20FOR%20DYNAMIC%20PANEL%20DATA%20MODELS%20WITH%20UNOBSERVED%20ENDOGENOUS%20STATE%20VARIABLES&rft.jtitle=International%20economic%20review%20(Philadelphia)&rft.au=Keane,%20Michael%20P.&rft.date=2010-11&rft.volume=51&rft.issue=4&rft.spage=925&rft.epage=958&rft.pages=925-958&rft.issn=0020-6598&rft.eissn=1468-2354&rft_id=info:doi/10.1111/j.1468-2354.2010.00606.x&rft_dat=%3Cjstor_proqu%3E40929497%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815298516&rft_id=info:pmid/&rft_jstor_id=40929497&rfr_iscdi=true