Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval
Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2012-04, Vol.21 (4), p.1613-1623 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1623 |
---|---|
container_issue | 4 |
container_start_page | 1613 |
container_title | IEEE transactions on image processing |
container_volume | 21 |
creator | Quellec, G. Lamard, M. Cazuguel, G. Cochener, B. Roux, C. |
description | Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined. |
doi_str_mv | 10.1109/TIP.2011.2180915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_940836506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6111294</ieee_id><sourcerecordid>940836506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</originalsourceid><addsrcrecordid>eNo9kE1rG0EMhoeS0qRJ74VC2VvJYV1pPnZ3jo5paoNDQnDocZDHWnvKOuvMrA3ur88auz5JSI9exCPEV4QBItifs8nTQALiQGIFFs0HcYVWYw6g5UXfgynzErW9FJ9T-guA2mDxSVxK2WNS6yvxcE-py_7Qjhvu8jtKvMgma1pyNlpRJN9xDP-oC-1rVrcxG4flqtlnwwVturDjE_rMXQy8o-ZGfKypSfzlVK_Fy_2v2WicTx9_T0bDae6VkV1e1FywV7IsrDKqtGrOHqlUC8P950YpNpVVyhJS5WVZVYxkGOvae6zntlTX4vaYu6LGbWJYU9y7loIbD6fuMAOw2miAHfbsjyO7ie3bllPn1iF5bhp65XabnNVQqcJA0ZNwJH1sU4pcn6MR3MG36327g2938t2ffD-Fb-drXpwP_gvugW9HIDDzeV0gorRavQNa2IHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>940836506</pqid></control><display><type>article</type><title>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Quellec, G. ; Lamard, M. ; Cazuguel, G. ; Cochener, B. ; Roux, C.</creator><creatorcontrib>Quellec, G. ; Lamard, M. ; Cazuguel, G. ; Cochener, B. ; Roux, C.</creatorcontrib><description>Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2180915</identifier><identifier>PMID: 22194244</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Bioengineering ; Buildings ; Content-based image retrieval (CBIR) ; Equations ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image retrieval ; Information Storage and Retrieval - methods ; Life Sciences ; Pattern Recognition, Automated - methods ; Radiology Information Systems ; relevance feedback ; Subtraction Technique ; Taylor series ; Training ; wavelet adaptation ; Wavelet Analysis ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2012-04, Vol.21 (4), p.1613-1623</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</citedby><cites>FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</cites><orcidid>0000-0003-1669-7140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6111294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6111294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00945400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quellec, G.</creatorcontrib><creatorcontrib>Lamard, M.</creatorcontrib><creatorcontrib>Cazuguel, G.</creatorcontrib><creatorcontrib>Cochener, B.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><title>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bioengineering</subject><subject>Buildings</subject><subject>Content-based image retrieval (CBIR)</subject><subject>Equations</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Life Sciences</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiology Information Systems</subject><subject>relevance feedback</subject><subject>Subtraction Technique</subject><subject>Taylor series</subject><subject>Training</subject><subject>wavelet adaptation</subject><subject>Wavelet Analysis</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1rG0EMhoeS0qRJ74VC2VvJYV1pPnZ3jo5paoNDQnDocZDHWnvKOuvMrA3ur88auz5JSI9exCPEV4QBItifs8nTQALiQGIFFs0HcYVWYw6g5UXfgynzErW9FJ9T-guA2mDxSVxK2WNS6yvxcE-py_7Qjhvu8jtKvMgma1pyNlpRJN9xDP-oC-1rVrcxG4flqtlnwwVturDjE_rMXQy8o-ZGfKypSfzlVK_Fy_2v2WicTx9_T0bDae6VkV1e1FywV7IsrDKqtGrOHqlUC8P950YpNpVVyhJS5WVZVYxkGOvae6zntlTX4vaYu6LGbWJYU9y7loIbD6fuMAOw2miAHfbsjyO7ie3bllPn1iF5bhp65XabnNVQqcJA0ZNwJH1sU4pcn6MR3MG36327g2938t2ffD-Fb-drXpwP_gvugW9HIDDzeV0gorRavQNa2IHw</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Quellec, G.</creator><creator>Lamard, M.</creator><creator>Cazuguel, G.</creator><creator>Cochener, B.</creator><creator>Roux, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1669-7140</orcidid></search><sort><creationdate>201204</creationdate><title>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</title><author>Quellec, G. ; Lamard, M. ; Cazuguel, G. ; Cochener, B. ; Roux, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bioengineering</topic><topic>Buildings</topic><topic>Content-based image retrieval (CBIR)</topic><topic>Equations</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Life Sciences</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiology Information Systems</topic><topic>relevance feedback</topic><topic>Subtraction Technique</topic><topic>Taylor series</topic><topic>Training</topic><topic>wavelet adaptation</topic><topic>Wavelet Analysis</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quellec, G.</creatorcontrib><creatorcontrib>Lamard, M.</creatorcontrib><creatorcontrib>Cazuguel, G.</creatorcontrib><creatorcontrib>Cochener, B.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quellec, G.</au><au>Lamard, M.</au><au>Cazuguel, G.</au><au>Cochener, B.</au><au>Roux, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-04</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>1613</spage><epage>1623</epage><pages>1613-1623</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22194244</pmid><doi>10.1109/TIP.2011.2180915</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1669-7140</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2012-04, Vol.21 (4), p.1613-1623 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_940836506 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial Intelligence Bioengineering Buildings Content-based image retrieval (CBIR) Equations Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image retrieval Information Storage and Retrieval - methods Life Sciences Pattern Recognition, Automated - methods Radiology Information Systems relevance feedback Subtraction Technique Taylor series Training wavelet adaptation Wavelet Analysis wavelet transform Wavelet transforms |
title | Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Wavelet-Based%20Image%20Characterization%20for%20Highly%20Adaptive%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Quellec,%20G.&rft.date=2012-04&rft.volume=21&rft.issue=4&rft.spage=1613&rft.epage=1623&rft.pages=1613-1623&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2180915&rft_dat=%3Cproquest_RIE%3E940836506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=940836506&rft_id=info:pmid/22194244&rft_ieee_id=6111294&rfr_iscdi=true |