Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval

Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-04, Vol.21 (4), p.1613-1623
Hauptverfasser: Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1623
container_issue 4
container_start_page 1613
container_title IEEE transactions on image processing
container_volume 21
creator Quellec, G.
Lamard, M.
Cazuguel, G.
Cochener, B.
Roux, C.
description Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.
doi_str_mv 10.1109/TIP.2011.2180915
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_940836506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6111294</ieee_id><sourcerecordid>940836506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</originalsourceid><addsrcrecordid>eNo9kE1rG0EMhoeS0qRJ74VC2VvJYV1pPnZ3jo5paoNDQnDocZDHWnvKOuvMrA3ur88auz5JSI9exCPEV4QBItifs8nTQALiQGIFFs0HcYVWYw6g5UXfgynzErW9FJ9T-guA2mDxSVxK2WNS6yvxcE-py_7Qjhvu8jtKvMgma1pyNlpRJN9xDP-oC-1rVrcxG4flqtlnwwVturDjE_rMXQy8o-ZGfKypSfzlVK_Fy_2v2WicTx9_T0bDae6VkV1e1FywV7IsrDKqtGrOHqlUC8P950YpNpVVyhJS5WVZVYxkGOvae6zntlTX4vaYu6LGbWJYU9y7loIbD6fuMAOw2miAHfbsjyO7ie3bllPn1iF5bhp65XabnNVQqcJA0ZNwJH1sU4pcn6MR3MG36327g2938t2ffD-Fb-drXpwP_gvugW9HIDDzeV0gorRavQNa2IHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>940836506</pqid></control><display><type>article</type><title>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Quellec, G. ; Lamard, M. ; Cazuguel, G. ; Cochener, B. ; Roux, C.</creator><creatorcontrib>Quellec, G. ; Lamard, M. ; Cazuguel, G. ; Cochener, B. ; Roux, C.</creatorcontrib><description>Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2180915</identifier><identifier>PMID: 22194244</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Bioengineering ; Buildings ; Content-based image retrieval (CBIR) ; Equations ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image retrieval ; Information Storage and Retrieval - methods ; Life Sciences ; Pattern Recognition, Automated - methods ; Radiology Information Systems ; relevance feedback ; Subtraction Technique ; Taylor series ; Training ; wavelet adaptation ; Wavelet Analysis ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2012-04, Vol.21 (4), p.1613-1623</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</citedby><cites>FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</cites><orcidid>0000-0003-1669-7140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6111294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6111294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00945400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quellec, G.</creatorcontrib><creatorcontrib>Lamard, M.</creatorcontrib><creatorcontrib>Cazuguel, G.</creatorcontrib><creatorcontrib>Cochener, B.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><title>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bioengineering</subject><subject>Buildings</subject><subject>Content-based image retrieval (CBIR)</subject><subject>Equations</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Life Sciences</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiology Information Systems</subject><subject>relevance feedback</subject><subject>Subtraction Technique</subject><subject>Taylor series</subject><subject>Training</subject><subject>wavelet adaptation</subject><subject>Wavelet Analysis</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kE1rG0EMhoeS0qRJ74VC2VvJYV1pPnZ3jo5paoNDQnDocZDHWnvKOuvMrA3ur88auz5JSI9exCPEV4QBItifs8nTQALiQGIFFs0HcYVWYw6g5UXfgynzErW9FJ9T-guA2mDxSVxK2WNS6yvxcE-py_7Qjhvu8jtKvMgma1pyNlpRJN9xDP-oC-1rVrcxG4flqtlnwwVturDjE_rMXQy8o-ZGfKypSfzlVK_Fy_2v2WicTx9_T0bDae6VkV1e1FywV7IsrDKqtGrOHqlUC8P950YpNpVVyhJS5WVZVYxkGOvae6zntlTX4vaYu6LGbWJYU9y7loIbD6fuMAOw2miAHfbsjyO7ie3bllPn1iF5bhp65XabnNVQqcJA0ZNwJH1sU4pcn6MR3MG36327g2938t2ffD-Fb-drXpwP_gvugW9HIDDzeV0gorRavQNa2IHw</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Quellec, G.</creator><creator>Lamard, M.</creator><creator>Cazuguel, G.</creator><creator>Cochener, B.</creator><creator>Roux, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1669-7140</orcidid></search><sort><creationdate>201204</creationdate><title>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</title><author>Quellec, G. ; Lamard, M. ; Cazuguel, G. ; Cochener, B. ; Roux, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6fe6ec32769353793bec1a73d5e004533e589339a1a8c2788e1a5e1ffcc1fb973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bioengineering</topic><topic>Buildings</topic><topic>Content-based image retrieval (CBIR)</topic><topic>Equations</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Life Sciences</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiology Information Systems</topic><topic>relevance feedback</topic><topic>Subtraction Technique</topic><topic>Taylor series</topic><topic>Training</topic><topic>wavelet adaptation</topic><topic>Wavelet Analysis</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quellec, G.</creatorcontrib><creatorcontrib>Lamard, M.</creatorcontrib><creatorcontrib>Cazuguel, G.</creatorcontrib><creatorcontrib>Cochener, B.</creatorcontrib><creatorcontrib>Roux, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quellec, G.</au><au>Lamard, M.</au><au>Cazuguel, G.</au><au>Cochener, B.</au><au>Roux, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-04</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>1613</spage><epage>1623</epage><pages>1613-1623</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Adaptive wavelet-based image characterizations have been proposed in previous works for content-based image retrieval (CBIR) applications. In these applications, the same wavelet basis was used to characterize each query image: This wavelet basis was tuned to maximize the retrieval performance in a training data set. We take it one step further in this paper: A different wavelet basis is used to characterize each query image. A regression function, which is tuned to maximize the retrieval performance in the training data set, is used to estimate the best wavelet filter, i.e., in terms of expected retrieval performance, for each query image. A simple image characterization, which is based on the standardized moments of the wavelet coefficient distributions, is presented. An algorithm is proposed to compute this image characterization almost instantly for every possible separable or nonseparable wavelet filter. Therefore, using a different wavelet basis for each query image does not considerably increase computation times. On the other hand, significant retrieval performance increases were obtained in a medical image data set, a texture data set, a face recognition data set, and an object picture data set. This additional flexibility in wavelet adaptation paves the way to relevance feedback on image characterization itself and not simply on the way image characterizations are combined.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22194244</pmid><doi>10.1109/TIP.2011.2180915</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1669-7140</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-04, Vol.21 (4), p.1613-1623
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_940836506
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Bioengineering
Buildings
Content-based image retrieval (CBIR)
Equations
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image retrieval
Information Storage and Retrieval - methods
Life Sciences
Pattern Recognition, Automated - methods
Radiology Information Systems
relevance feedback
Subtraction Technique
Taylor series
Training
wavelet adaptation
Wavelet Analysis
wavelet transform
Wavelet transforms
title Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Wavelet-Based%20Image%20Characterization%20for%20Highly%20Adaptive%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Quellec,%20G.&rft.date=2012-04&rft.volume=21&rft.issue=4&rft.spage=1613&rft.epage=1623&rft.pages=1613-1623&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2180915&rft_dat=%3Cproquest_RIE%3E940836506%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=940836506&rft_id=info:pmid/22194244&rft_ieee_id=6111294&rfr_iscdi=true