JUDOCA: JUnction Detection Operator Based on Circumferential Anchors

In this paper, we propose an edge-based junction detector. In addition to detecting the locations of junctions, this operator specifies their orientations as well. In this respect, a junction is defined as a meeting point of two or more ridges in the gradient domain into which an image can be transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-04, Vol.21 (4), p.2109-2118
Hauptverfasser: Elias, R., Laganiere, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2118
container_issue 4
container_start_page 2109
container_title IEEE transactions on image processing
container_volume 21
creator Elias, R.
Laganiere, R.
description In this paper, we propose an edge-based junction detector. In addition to detecting the locations of junctions, this operator specifies their orientations as well. In this respect, a junction is defined as a meeting point of two or more ridges in the gradient domain into which an image can be transformed through Gaussian derivative filters. To accelerate the detection process, two binary edge maps are produced; a thick-edge map is obtained by imposing a threshold on the gradient magnitude image, and another thin-edge map is obtained by calculating the local maxima. Circular masks are centered at putative junctions in the thick-edge map, and the so-called circumferential anchors or CA points are detected in the thin map. Radial lines are scanned to determine the presence of junctions. Comparisons are made with other well-known detectors. This paper proposes a new formula for measuring the detection accuracy. In addition, the so-called junction coordinate systems are introduced. Our operator has been successfully used to solve many problems such as wide-baseline matching, 3-D reconstruction, camera parameter enhancing, and indoor and obstacle localization.
doi_str_mv 10.1109/TIP.2011.2175738
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_940834772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6078430</ieee_id><sourcerecordid>940834772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-c9b1d4171d2d31ccee2bcbc7270847ee5790eebd404aa01d50bbfe4d36c7720a3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EolDYkZBQNqaUO9uJE7aS8tGqUhnaOXKciwjKR7GTgX9PqpRO9-rueW94GLtDmCFC_LRdfs44IM44qkCJ6IxdYSzRB5D8fMgQKF-hjCfs2rlvAJQBhpdswjlEYQBwxRar3WKTzJ-91a4xXdk23oI6GtNmT1Z3rfVetKPcGzZJaU1fF2Sp6UpdefPGfLXW3bCLQleObo9zynZvr9vkw19v3pfJfO0bgVHnmzjDXKLCnOcCjSHimcmM4goiqYgCFQNRlkuQWgPmAWRZQTIXoVGKgxZT9jj-3dv2pyfXpXXpDFWVbqjtXRpLiIQc2IGEkTS2dc5Ske5tWWv7myKkB3XpoC49qEuP6obKw_F5n9WUnwr_rgbgfgRKIjqdQ1CRFCD-AFJJcY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>940834772</pqid></control><display><type>article</type><title>JUDOCA: JUnction Detection Operator Based on Circumferential Anchors</title><source>IEEE Electronic Library (IEL)</source><creator>Elias, R. ; Laganiere, R.</creator><creatorcontrib>Elias, R. ; Laganiere, R.</creatorcontrib><description>In this paper, we propose an edge-based junction detector. In addition to detecting the locations of junctions, this operator specifies their orientations as well. In this respect, a junction is defined as a meeting point of two or more ridges in the gradient domain into which an image can be transformed through Gaussian derivative filters. To accelerate the detection process, two binary edge maps are produced; a thick-edge map is obtained by imposing a threshold on the gradient magnitude image, and another thin-edge map is obtained by calculating the local maxima. Circular masks are centered at putative junctions in the thick-edge map, and the so-called circumferential anchors or CA points are detected in the thin map. Radial lines are scanned to determine the presence of junctions. Comparisons are made with other well-known detectors. This paper proposes a new formula for measuring the detection accuracy. In addition, the so-called junction coordinate systems are introduced. Our operator has been successfully used to solve many problems such as wide-baseline matching, 3-D reconstruction, camera parameter enhancing, and indoor and obstacle localization.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2175738</identifier><identifier>PMID: 22086500</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Corner ; corner detection ; Detectors ; feature detection ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; interest-point detection ; junction ; junction detection ; Junctions ; Noise ; Noise measurement ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Smoothing methods ; Subtraction Technique</subject><ispartof>IEEE transactions on image processing, 2012-04, Vol.21 (4), p.2109-2118</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-c9b1d4171d2d31ccee2bcbc7270847ee5790eebd404aa01d50bbfe4d36c7720a3</citedby><cites>FETCH-LOGICAL-c318t-c9b1d4171d2d31ccee2bcbc7270847ee5790eebd404aa01d50bbfe4d36c7720a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6078430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6078430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22086500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elias, R.</creatorcontrib><creatorcontrib>Laganiere, R.</creatorcontrib><title>JUDOCA: JUnction Detection Operator Based on Circumferential Anchors</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose an edge-based junction detector. In addition to detecting the locations of junctions, this operator specifies their orientations as well. In this respect, a junction is defined as a meeting point of two or more ridges in the gradient domain into which an image can be transformed through Gaussian derivative filters. To accelerate the detection process, two binary edge maps are produced; a thick-edge map is obtained by imposing a threshold on the gradient magnitude image, and another thin-edge map is obtained by calculating the local maxima. Circular masks are centered at putative junctions in the thick-edge map, and the so-called circumferential anchors or CA points are detected in the thin map. Radial lines are scanned to determine the presence of junctions. Comparisons are made with other well-known detectors. This paper proposes a new formula for measuring the detection accuracy. In addition, the so-called junction coordinate systems are introduced. Our operator has been successfully used to solve many problems such as wide-baseline matching, 3-D reconstruction, camera parameter enhancing, and indoor and obstacle localization.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Corner</subject><subject>corner detection</subject><subject>Detectors</subject><subject>feature detection</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>interest-point detection</subject><subject>junction</subject><subject>junction detection</subject><subject>Junctions</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Smoothing methods</subject><subject>Subtraction Technique</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAQhi0EolDYkZBQNqaUO9uJE7aS8tGqUhnaOXKciwjKR7GTgX9PqpRO9-rueW94GLtDmCFC_LRdfs44IM44qkCJ6IxdYSzRB5D8fMgQKF-hjCfs2rlvAJQBhpdswjlEYQBwxRar3WKTzJ-91a4xXdk23oI6GtNmT1Z3rfVetKPcGzZJaU1fF2Sp6UpdefPGfLXW3bCLQleObo9zynZvr9vkw19v3pfJfO0bgVHnmzjDXKLCnOcCjSHimcmM4goiqYgCFQNRlkuQWgPmAWRZQTIXoVGKgxZT9jj-3dv2pyfXpXXpDFWVbqjtXRpLiIQc2IGEkTS2dc5Ske5tWWv7myKkB3XpoC49qEuP6obKw_F5n9WUnwr_rgbgfgRKIjqdQ1CRFCD-AFJJcY4</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Elias, R.</creator><creator>Laganiere, R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>JUDOCA: JUnction Detection Operator Based on Circumferential Anchors</title><author>Elias, R. ; Laganiere, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-c9b1d4171d2d31ccee2bcbc7270847ee5790eebd404aa01d50bbfe4d36c7720a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Corner</topic><topic>corner detection</topic><topic>Detectors</topic><topic>feature detection</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>interest-point detection</topic><topic>junction</topic><topic>junction detection</topic><topic>Junctions</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Smoothing methods</topic><topic>Subtraction Technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elias, R.</creatorcontrib><creatorcontrib>Laganiere, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elias, R.</au><au>Laganiere, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JUDOCA: JUnction Detection Operator Based on Circumferential Anchors</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-04</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>2109</spage><epage>2118</epage><pages>2109-2118</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose an edge-based junction detector. In addition to detecting the locations of junctions, this operator specifies their orientations as well. In this respect, a junction is defined as a meeting point of two or more ridges in the gradient domain into which an image can be transformed through Gaussian derivative filters. To accelerate the detection process, two binary edge maps are produced; a thick-edge map is obtained by imposing a threshold on the gradient magnitude image, and another thin-edge map is obtained by calculating the local maxima. Circular masks are centered at putative junctions in the thick-edge map, and the so-called circumferential anchors or CA points are detected in the thin map. Radial lines are scanned to determine the presence of junctions. Comparisons are made with other well-known detectors. This paper proposes a new formula for measuring the detection accuracy. In addition, the so-called junction coordinate systems are introduced. Our operator has been successfully used to solve many problems such as wide-baseline matching, 3-D reconstruction, camera parameter enhancing, and indoor and obstacle localization.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22086500</pmid><doi>10.1109/TIP.2011.2175738</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-04, Vol.21 (4), p.2109-2118
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_940834772
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Corner
corner detection
Detectors
feature detection
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
interest-point detection
junction
junction detection
Junctions
Noise
Noise measurement
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Smoothing methods
Subtraction Technique
title JUDOCA: JUnction Detection Operator Based on Circumferential Anchors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T09%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JUDOCA:%20JUnction%20Detection%20Operator%20Based%20on%20Circumferential%20Anchors&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Elias,%20R.&rft.date=2012-04&rft.volume=21&rft.issue=4&rft.spage=2109&rft.epage=2118&rft.pages=2109-2118&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2175738&rft_dat=%3Cproquest_RIE%3E940834772%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=940834772&rft_id=info:pmid/22086500&rft_ieee_id=6078430&rfr_iscdi=true