Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing
Summary Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified,...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2012-03, Vol.69 (6), p.1052-1063 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1063 |
---|---|
container_issue | 6 |
container_start_page | 1052 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 69 |
creator | Wijekoon, Champa P. Facchini, Peter J. |
description | Summary
Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy. |
doi_str_mv | 10.1111/j.1365-313X.2011.04855.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_929506508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020838810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERZfCKyALCcElYRzHjnPggCqgVJVAYg_cLMdxWm-TOMQbtuHEI_CMPEkn7FIkDghfbOn_5h_P_IRQBinD83KTMi5Fwhn_nGbAWAq5EiK9uUdWd8J9soJSQlLkLDsmD2PcALCCy_wBOc4yKBUarUj9aY5b15mtt_S6D_a6DruehoZ2YRyufO_oYLZXOzNT13-bOxepR3nwU0eHMAwznaLvL-lXP07x5_cfvq8n62p66bAy-tb1FuVH5KgxbXSPD_cJWb99sz49Sy4-vHt_-voisQKUSCyvK-Gck5xlEniVl7kRILOiADCNyKCpLNSirJpalblkjeKscJLlgLOoip-Q53vbYQxfJhe3uvPRurY1vQtT1GVWoh22QvLFP0kGGVJKMUD06V_oJkxjj2OgnyryQkKOkNpDdgwxjq7Rw-g7M87opJfE9EYvweglGL0kpn8lpm-w9MnBf6o6V98V_o4IgWcHwERr2mY0uNP4hxMCpyokcq_23A7XPv_3B_T64_ny4rf6nLJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928747604</pqid></control><display><type>article</type><title>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Wijekoon, Champa P. ; Facchini, Peter J.</creator><creatorcontrib>Wijekoon, Champa P. ; Facchini, Peter J.</creatorcontrib><description>Summary
Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2011.04855.x</identifier><identifier>PMID: 22098111</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Alkaloids ; Analgesics ; Antibodies ; benzylisoquinoline alkaloids ; Benzylisoquinolines - metabolism ; Biological and medical sciences ; Biosynthesis ; Buprenorphine ; Chromatography, High Pressure Liquid ; Codeine ; Drugs ; Enzymes ; Flowers & plants ; functional genomics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; Gene Knockdown Techniques - methods ; Gene Silencing ; Genes, Plant ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; genomics ; Immunoblotting ; metabolic engineering ; Metabolic Engineering - methods ; Metabolism ; Metabolism. Physicochemical requirements ; Morphinans - metabolism ; Morphine ; Morphine - biosynthesis ; Morphine - metabolism ; NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases ; Naltrexone ; Narcotics ; opium poppy ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; oxycodone ; Papaver - enzymology ; Papaver - genetics ; Papaver - metabolism ; Papaver somniferum ; Pharmaceuticals ; Plant biology ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Viruses - genetics ; Plant Viruses - metabolism ; Polymerase chain reaction ; Post-transcription ; reductase ; Reverse Transcriptase Polymerase Chain Reaction ; specialized metabolism ; Substrate Specificity ; Transcription ; virus‐induced gene silencing</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-03, Vol.69 (6), p.1052-1063</ispartof><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</citedby><cites>FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2011.04855.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2011.04855.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25595076$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22098111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wijekoon, Champa P.</creatorcontrib><creatorcontrib>Facchini, Peter J.</creatorcontrib><title>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.</description><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Alkaloids</subject><subject>Analgesics</subject><subject>Antibodies</subject><subject>benzylisoquinoline alkaloids</subject><subject>Benzylisoquinolines - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Buprenorphine</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Codeine</subject><subject>Drugs</subject><subject>Enzymes</subject><subject>Flowers & plants</subject><subject>functional genomics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Knockdown Techniques - methods</subject><subject>Gene Silencing</subject><subject>Genes, Plant</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>genomics</subject><subject>Immunoblotting</subject><subject>metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Morphinans - metabolism</subject><subject>Morphine</subject><subject>Morphine - biosynthesis</subject><subject>Morphine - metabolism</subject><subject>NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases</subject><subject>Naltrexone</subject><subject>Narcotics</subject><subject>opium poppy</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>oxycodone</subject><subject>Papaver - enzymology</subject><subject>Papaver - genetics</subject><subject>Papaver - metabolism</subject><subject>Papaver somniferum</subject><subject>Pharmaceuticals</subject><subject>Plant biology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Viruses - genetics</subject><subject>Plant Viruses - metabolism</subject><subject>Polymerase chain reaction</subject><subject>Post-transcription</subject><subject>reductase</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>specialized metabolism</subject><subject>Substrate Specificity</subject><subject>Transcription</subject><subject>virus‐induced gene silencing</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi1ERZfCKyALCcElYRzHjnPggCqgVJVAYg_cLMdxWm-TOMQbtuHEI_CMPEkn7FIkDghfbOn_5h_P_IRQBinD83KTMi5Fwhn_nGbAWAq5EiK9uUdWd8J9soJSQlLkLDsmD2PcALCCy_wBOc4yKBUarUj9aY5b15mtt_S6D_a6DruehoZ2YRyufO_oYLZXOzNT13-bOxepR3nwU0eHMAwznaLvL-lXP07x5_cfvq8n62p66bAy-tb1FuVH5KgxbXSPD_cJWb99sz49Sy4-vHt_-voisQKUSCyvK-Gck5xlEniVl7kRILOiADCNyKCpLNSirJpalblkjeKscJLlgLOoip-Q53vbYQxfJhe3uvPRurY1vQtT1GVWoh22QvLFP0kGGVJKMUD06V_oJkxjj2OgnyryQkKOkNpDdgwxjq7Rw-g7M87opJfE9EYvweglGL0kpn8lpm-w9MnBf6o6V98V_o4IgWcHwERr2mY0uNP4hxMCpyokcq_23A7XPv_3B_T64_ny4rf6nLJw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Wijekoon, Champa P.</creator><creator>Facchini, Peter J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</title><author>Wijekoon, Champa P. ; Facchini, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Alkaloids</topic><topic>Analgesics</topic><topic>Antibodies</topic><topic>benzylisoquinoline alkaloids</topic><topic>Benzylisoquinolines - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Buprenorphine</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Codeine</topic><topic>Drugs</topic><topic>Enzymes</topic><topic>Flowers & plants</topic><topic>functional genomics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Knockdown Techniques - methods</topic><topic>Gene Silencing</topic><topic>Genes, Plant</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>genomics</topic><topic>Immunoblotting</topic><topic>metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Morphinans - metabolism</topic><topic>Morphine</topic><topic>Morphine - biosynthesis</topic><topic>Morphine - metabolism</topic><topic>NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases</topic><topic>Naltrexone</topic><topic>Narcotics</topic><topic>opium poppy</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>oxycodone</topic><topic>Papaver - enzymology</topic><topic>Papaver - genetics</topic><topic>Papaver - metabolism</topic><topic>Papaver somniferum</topic><topic>Pharmaceuticals</topic><topic>Plant biology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Viruses - genetics</topic><topic>Plant Viruses - metabolism</topic><topic>Polymerase chain reaction</topic><topic>Post-transcription</topic><topic>reductase</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>specialized metabolism</topic><topic>Substrate Specificity</topic><topic>Transcription</topic><topic>virus‐induced gene silencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijekoon, Champa P.</creatorcontrib><creatorcontrib>Facchini, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijekoon, Champa P.</au><au>Facchini, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-03</date><risdate>2012</risdate><volume>69</volume><issue>6</issue><spage>1052</spage><epage>1063</epage><pages>1052-1063</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22098111</pmid><doi>10.1111/j.1365-313X.2011.04855.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2012-03, Vol.69 (6), p.1052-1063 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_929506508 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals |
subjects | Agrobacterium tumefaciens - genetics Agrobacterium tumefaciens - metabolism Alcohol Oxidoreductases - genetics Alcohol Oxidoreductases - metabolism Alkaloids Analgesics Antibodies benzylisoquinoline alkaloids Benzylisoquinolines - metabolism Biological and medical sciences Biosynthesis Buprenorphine Chromatography, High Pressure Liquid Codeine Drugs Enzymes Flowers & plants functional genomics Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Enzymologic Gene Expression Regulation, Plant Gene Knockdown Techniques - methods Gene Silencing Genes, Plant Genetic Vectors - genetics Genetic Vectors - metabolism genomics Immunoblotting metabolic engineering Metabolic Engineering - methods Metabolism Metabolism. Physicochemical requirements Morphinans - metabolism Morphine Morphine - biosynthesis Morphine - metabolism NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases Naltrexone Narcotics opium poppy Oxidoreductases - genetics Oxidoreductases - metabolism oxycodone Papaver - enzymology Papaver - genetics Papaver - metabolism Papaver somniferum Pharmaceuticals Plant biology Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plant Viruses - genetics Plant Viruses - metabolism Polymerase chain reaction Post-transcription reductase Reverse Transcriptase Polymerase Chain Reaction specialized metabolism Substrate Specificity Transcription virus‐induced gene silencing |
title | Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20knockdown%20of%20morphine%20pathway%20enzymes%20in%20opium%20poppy%20using%20virus%E2%80%90induced%20gene%20silencing&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Wijekoon,%20Champa%20P.&rft.date=2012-03&rft.volume=69&rft.issue=6&rft.spage=1052&rft.epage=1063&rft.pages=1052-1063&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2011.04855.x&rft_dat=%3Cproquest_cross%3E1020838810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928747604&rft_id=info:pmid/22098111&rfr_iscdi=true |