Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing

Summary Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-03, Vol.69 (6), p.1052-1063
Hauptverfasser: Wijekoon, Champa P., Facchini, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 6
container_start_page 1052
container_title The Plant journal : for cell and molecular biology
container_volume 69
creator Wijekoon, Champa P.
Facchini, Peter J.
description Summary Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.
doi_str_mv 10.1111/j.1365-313X.2011.04855.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_929506508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020838810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERZfCKyALCcElYRzHjnPggCqgVJVAYg_cLMdxWm-TOMQbtuHEI_CMPEkn7FIkDghfbOn_5h_P_IRQBinD83KTMi5Fwhn_nGbAWAq5EiK9uUdWd8J9soJSQlLkLDsmD2PcALCCy_wBOc4yKBUarUj9aY5b15mtt_S6D_a6DruehoZ2YRyufO_oYLZXOzNT13-bOxepR3nwU0eHMAwznaLvL-lXP07x5_cfvq8n62p66bAy-tb1FuVH5KgxbXSPD_cJWb99sz49Sy4-vHt_-voisQKUSCyvK-Gck5xlEniVl7kRILOiADCNyKCpLNSirJpalblkjeKscJLlgLOoip-Q53vbYQxfJhe3uvPRurY1vQtT1GVWoh22QvLFP0kGGVJKMUD06V_oJkxjj2OgnyryQkKOkNpDdgwxjq7Rw-g7M87opJfE9EYvweglGL0kpn8lpm-w9MnBf6o6V98V_o4IgWcHwERr2mY0uNP4hxMCpyokcq_23A7XPv_3B_T64_ny4rf6nLJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928747604</pqid></control><display><type>article</type><title>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Wijekoon, Champa P. ; Facchini, Peter J.</creator><creatorcontrib>Wijekoon, Champa P. ; Facchini, Peter J.</creatorcontrib><description>Summary Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2011.04855.x</identifier><identifier>PMID: 22098111</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Alkaloids ; Analgesics ; Antibodies ; benzylisoquinoline alkaloids ; Benzylisoquinolines - metabolism ; Biological and medical sciences ; Biosynthesis ; Buprenorphine ; Chromatography, High Pressure Liquid ; Codeine ; Drugs ; Enzymes ; Flowers &amp; plants ; functional genomics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; Gene Knockdown Techniques - methods ; Gene Silencing ; Genes, Plant ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; genomics ; Immunoblotting ; metabolic engineering ; Metabolic Engineering - methods ; Metabolism ; Metabolism. Physicochemical requirements ; Morphinans - metabolism ; Morphine ; Morphine - biosynthesis ; Morphine - metabolism ; NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases ; Naltrexone ; Narcotics ; opium poppy ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; oxycodone ; Papaver - enzymology ; Papaver - genetics ; Papaver - metabolism ; Papaver somniferum ; Pharmaceuticals ; Plant biology ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Viruses - genetics ; Plant Viruses - metabolism ; Polymerase chain reaction ; Post-transcription ; reductase ; Reverse Transcriptase Polymerase Chain Reaction ; specialized metabolism ; Substrate Specificity ; Transcription ; virus‐induced gene silencing</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-03, Vol.69 (6), p.1052-1063</ispartof><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</citedby><cites>FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2011.04855.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2011.04855.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27911,27912,45561,45562,46396,46820</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25595076$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22098111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wijekoon, Champa P.</creatorcontrib><creatorcontrib>Facchini, Peter J.</creatorcontrib><title>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.</description><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Alkaloids</subject><subject>Analgesics</subject><subject>Antibodies</subject><subject>benzylisoquinoline alkaloids</subject><subject>Benzylisoquinolines - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Buprenorphine</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Codeine</subject><subject>Drugs</subject><subject>Enzymes</subject><subject>Flowers &amp; plants</subject><subject>functional genomics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Knockdown Techniques - methods</subject><subject>Gene Silencing</subject><subject>Genes, Plant</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>genomics</subject><subject>Immunoblotting</subject><subject>metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Morphinans - metabolism</subject><subject>Morphine</subject><subject>Morphine - biosynthesis</subject><subject>Morphine - metabolism</subject><subject>NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases</subject><subject>Naltrexone</subject><subject>Narcotics</subject><subject>opium poppy</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>oxycodone</subject><subject>Papaver - enzymology</subject><subject>Papaver - genetics</subject><subject>Papaver - metabolism</subject><subject>Papaver somniferum</subject><subject>Pharmaceuticals</subject><subject>Plant biology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Viruses - genetics</subject><subject>Plant Viruses - metabolism</subject><subject>Polymerase chain reaction</subject><subject>Post-transcription</subject><subject>reductase</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>specialized metabolism</subject><subject>Substrate Specificity</subject><subject>Transcription</subject><subject>virus‐induced gene silencing</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi1ERZfCKyALCcElYRzHjnPggCqgVJVAYg_cLMdxWm-TOMQbtuHEI_CMPEkn7FIkDghfbOn_5h_P_IRQBinD83KTMi5Fwhn_nGbAWAq5EiK9uUdWd8J9soJSQlLkLDsmD2PcALCCy_wBOc4yKBUarUj9aY5b15mtt_S6D_a6DruehoZ2YRyufO_oYLZXOzNT13-bOxepR3nwU0eHMAwznaLvL-lXP07x5_cfvq8n62p66bAy-tb1FuVH5KgxbXSPD_cJWb99sz49Sy4-vHt_-voisQKUSCyvK-Gck5xlEniVl7kRILOiADCNyKCpLNSirJpalblkjeKscJLlgLOoip-Q53vbYQxfJhe3uvPRurY1vQtT1GVWoh22QvLFP0kGGVJKMUD06V_oJkxjj2OgnyryQkKOkNpDdgwxjq7Rw-g7M87opJfE9EYvweglGL0kpn8lpm-w9MnBf6o6V98V_o4IgWcHwERr2mY0uNP4hxMCpyokcq_23A7XPv_3B_T64_ny4rf6nLJw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Wijekoon, Champa P.</creator><creator>Facchini, Peter J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</title><author>Wijekoon, Champa P. ; Facchini, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5085-c3db5eee6312603b494a50627700af520fbc0d59bfd89461f8317e61408118b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Alkaloids</topic><topic>Analgesics</topic><topic>Antibodies</topic><topic>benzylisoquinoline alkaloids</topic><topic>Benzylisoquinolines - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Buprenorphine</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Codeine</topic><topic>Drugs</topic><topic>Enzymes</topic><topic>Flowers &amp; plants</topic><topic>functional genomics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Knockdown Techniques - methods</topic><topic>Gene Silencing</topic><topic>Genes, Plant</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>genomics</topic><topic>Immunoblotting</topic><topic>metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Morphinans - metabolism</topic><topic>Morphine</topic><topic>Morphine - biosynthesis</topic><topic>Morphine - metabolism</topic><topic>NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases</topic><topic>Naltrexone</topic><topic>Narcotics</topic><topic>opium poppy</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>oxycodone</topic><topic>Papaver - enzymology</topic><topic>Papaver - genetics</topic><topic>Papaver - metabolism</topic><topic>Papaver somniferum</topic><topic>Pharmaceuticals</topic><topic>Plant biology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Viruses - genetics</topic><topic>Plant Viruses - metabolism</topic><topic>Polymerase chain reaction</topic><topic>Post-transcription</topic><topic>reductase</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>specialized metabolism</topic><topic>Substrate Specificity</topic><topic>Transcription</topic><topic>virus‐induced gene silencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijekoon, Champa P.</creatorcontrib><creatorcontrib>Facchini, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijekoon, Champa P.</au><au>Facchini, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-03</date><risdate>2012</risdate><volume>69</volume><issue>6</issue><spage>1052</spage><epage>1063</epage><pages>1052-1063</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi‐synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post‐transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus‐induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real‐time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7‐O‐acetyltransferase (SalAT), thebaine 6‐O‐demethylase (T6ODM), codeinone reductase (COR), and codeine O‐demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22098111</pmid><doi>10.1111/j.1365-313X.2011.04855.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2012-03, Vol.69 (6), p.1052-1063
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_929506508
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects Agrobacterium tumefaciens - genetics
Agrobacterium tumefaciens - metabolism
Alcohol Oxidoreductases - genetics
Alcohol Oxidoreductases - metabolism
Alkaloids
Analgesics
Antibodies
benzylisoquinoline alkaloids
Benzylisoquinolines - metabolism
Biological and medical sciences
Biosynthesis
Buprenorphine
Chromatography, High Pressure Liquid
Codeine
Drugs
Enzymes
Flowers & plants
functional genomics
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
Gene Knockdown Techniques - methods
Gene Silencing
Genes, Plant
Genetic Vectors - genetics
Genetic Vectors - metabolism
genomics
Immunoblotting
metabolic engineering
Metabolic Engineering - methods
Metabolism
Metabolism. Physicochemical requirements
Morphinans - metabolism
Morphine
Morphine - biosynthesis
Morphine - metabolism
NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases
Naltrexone
Narcotics
opium poppy
Oxidoreductases - genetics
Oxidoreductases - metabolism
oxycodone
Papaver - enzymology
Papaver - genetics
Papaver - metabolism
Papaver somniferum
Pharmaceuticals
Plant biology
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Viruses - genetics
Plant Viruses - metabolism
Polymerase chain reaction
Post-transcription
reductase
Reverse Transcriptase Polymerase Chain Reaction
specialized metabolism
Substrate Specificity
Transcription
virus‐induced gene silencing
title Systematic knockdown of morphine pathway enzymes in opium poppy using virus‐induced gene silencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20knockdown%20of%20morphine%20pathway%20enzymes%20in%20opium%20poppy%20using%20virus%E2%80%90induced%20gene%20silencing&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Wijekoon,%20Champa%20P.&rft.date=2012-03&rft.volume=69&rft.issue=6&rft.spage=1052&rft.epage=1063&rft.pages=1052-1063&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2011.04855.x&rft_dat=%3Cproquest_cross%3E1020838810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928747604&rft_id=info:pmid/22098111&rfr_iscdi=true