Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions

We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-12, Vol.84 (6 Pt 1), p.061143-061143, Article 061143
Hauptverfasser: Denisov, S I, Yuste, S B, Bystrik, Yu S, Kantz, H, Lindenberg, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 061143
container_issue 6 Pt 1
container_start_page 061143
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 84
creator Denisov, S I
Yuste, S B
Bystrik, Yu S
Kantz, H
Lindenberg, K
description We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a nondegenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox H function and find its behavior for small and large distances.
doi_str_mv 10.1103/PhysRevE.84.061143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928911680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928911680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-97b624a5d71e51ca2d481ce4e08438bd3419b6bec0ee3da7d1550a840fb284a63</originalsourceid><addsrcrecordid>eNpVkctOwzAQRS0EouXxAyyQd6xS_EriLKuqPKRKIATryLGnrUsSh9hp1Y_gn0lpi8RqRpp7ZjT3InRDyYhSwu9fl1v_BuvpSIoRSSgV_AQNaRyTiPE0Od31PIt4GscDdOH9ihDOuBTnaMAYJ4KkyRB9j_22aoILVmPvyi5YV3vs5tiAdl1TgsHa1cHWnet8FGwFuFW1cRXeqPLT440NS-y7BtolqPU2CsrumI2yPbPAv0Cvx_-mq65qcAn1omeN9aG1xf7wFTqbq9LD9aFeoo-H6fvkKZq9PD5PxrNIc5GEKEuLhAkVm5RCTLViRkiqQQCRgsvCcEGzIilAEwBuVGp2pigpyLxgUqiEX6K7_d6mdV8d-JBX1msoS1VD_2eeMZlRmkjSK9leqVvnfQvzvGltpdptTkm-SyE_ppBLke9T6KHbw_quqMD8IUfb-Q8grYl2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928911680</pqid></control><display><type>article</type><title>Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Denisov, S I ; Yuste, S B ; Bystrik, Yu S ; Kantz, H ; Lindenberg, K</creator><creatorcontrib>Denisov, S I ; Yuste, S B ; Bystrik, Yu S ; Kantz, H ; Lindenberg, K</creatorcontrib><description>We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a nondegenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox H function and find its behavior for small and large distances.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.061143</identifier><identifier>PMID: 22304076</identifier><language>eng</language><publisher>United States</publisher><subject>Models, Theoretical ; Probability ; Stochastic Processes ; Time Factors</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-12, Vol.84 (6 Pt 1), p.061143-061143, Article 061143</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-97b624a5d71e51ca2d481ce4e08438bd3419b6bec0ee3da7d1550a840fb284a63</citedby><cites>FETCH-LOGICAL-c346t-97b624a5d71e51ca2d481ce4e08438bd3419b6bec0ee3da7d1550a840fb284a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22304076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Denisov, S I</creatorcontrib><creatorcontrib>Yuste, S B</creatorcontrib><creatorcontrib>Bystrik, Yu S</creatorcontrib><creatorcontrib>Kantz, H</creatorcontrib><creatorcontrib>Lindenberg, K</creatorcontrib><title>Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a nondegenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox H function and find its behavior for small and large distances.</description><subject>Models, Theoretical</subject><subject>Probability</subject><subject>Stochastic Processes</subject><subject>Time Factors</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctOwzAQRS0EouXxAyyQd6xS_EriLKuqPKRKIATryLGnrUsSh9hp1Y_gn0lpi8RqRpp7ZjT3InRDyYhSwu9fl1v_BuvpSIoRSSgV_AQNaRyTiPE0Od31PIt4GscDdOH9ihDOuBTnaMAYJ4KkyRB9j_22aoILVmPvyi5YV3vs5tiAdl1TgsHa1cHWnet8FGwFuFW1cRXeqPLT440NS-y7BtolqPU2CsrumI2yPbPAv0Cvx_-mq65qcAn1omeN9aG1xf7wFTqbq9LD9aFeoo-H6fvkKZq9PD5PxrNIc5GEKEuLhAkVm5RCTLViRkiqQQCRgsvCcEGzIilAEwBuVGp2pigpyLxgUqiEX6K7_d6mdV8d-JBX1msoS1VD_2eeMZlRmkjSK9leqVvnfQvzvGltpdptTkm-SyE_ppBLke9T6KHbw_quqMD8IUfb-Q8grYl2</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Denisov, S I</creator><creator>Yuste, S B</creator><creator>Bystrik, Yu S</creator><creator>Kantz, H</creator><creator>Lindenberg, K</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions</title><author>Denisov, S I ; Yuste, S B ; Bystrik, Yu S ; Kantz, H ; Lindenberg, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-97b624a5d71e51ca2d481ce4e08438bd3419b6bec0ee3da7d1550a840fb284a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Models, Theoretical</topic><topic>Probability</topic><topic>Stochastic Processes</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denisov, S I</creatorcontrib><creatorcontrib>Yuste, S B</creatorcontrib><creatorcontrib>Bystrik, Yu S</creatorcontrib><creatorcontrib>Kantz, H</creatorcontrib><creatorcontrib>Lindenberg, K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denisov, S I</au><au>Yuste, S B</au><au>Bystrik, Yu S</au><au>Kantz, H</au><au>Lindenberg, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-12</date><risdate>2011</risdate><volume>84</volume><issue>6 Pt 1</issue><spage>061143</spage><epage>061143</epage><pages>061143-061143</pages><artnum>061143</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a nondegenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox H function and find its behavior for small and large distances.</abstract><cop>United States</cop><pmid>22304076</pmid><doi>10.1103/PhysRevE.84.061143</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-12, Vol.84 (6 Pt 1), p.061143-061143, Article 061143
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_928911680
source MEDLINE; American Physical Society Journals
subjects Models, Theoretical
Probability
Stochastic Processes
Time Factors
title Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20solutions%20of%20decoupled%20continuous-time%20random%20walks%20with%20superheavy-tailed%20waiting%20time%20and%20heavy-tailed%20jump%20length%20distributions&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Denisov,%20S%20I&rft.date=2011-12&rft.volume=84&rft.issue=6%20Pt%201&rft.spage=061143&rft.epage=061143&rft.pages=061143-061143&rft.artnum=061143&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.061143&rft_dat=%3Cproquest_cross%3E928911680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928911680&rft_id=info:pmid/22304076&rfr_iscdi=true