Surface state engineering of molecule―molecule interactions
Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2012-04, Vol.14 (14), p.4971-4976 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4976 |
---|---|
container_issue | 14 |
container_start_page | 4971 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | ROJAS, Geoffrey SIMPSON, Scott XUMIN CHEN KUNKEL, Donna A NITZ, Justin JIE XIAO DOWBEN, Peter A ZUREK, Eva ENDERS, Axel |
description | Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transfer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules. |
doi_str_mv | 10.1039/c2cp40254h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928911185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928911185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-43ada2b5624ca453bfe4aca1963e5c55f655ea950a34bb7a2f96836c9ca8b63</originalsourceid><addsrcrecordid>eNp90LtKA0EUBuBBFBOjjQ8g24girM59d4oUErxBwCL2y9nJmbiylzizW9j5Er6gT-KG3Dqr8xcfP4efkHNGbxkV5s5yu5SUK_l-QIZMahEbmsrDXU70gJyE8EEpZYqJYzLgXBhFjR6S8azzDixGoYUWI6wXRY3oi3oRNS6qmhJtV-Lv9882RkXdogfbFk0dTsmRgzLg2eaOyOzx4W3yHE9fn14m99PYCmnaWAqYA8-V5tKCVCJ3KMECM1qgsko5rRRC_xEImecJcGd0KrQ1FtJcixG5WrcuffPZYWizqggWyxJqbLqQGZ4axliqenn9r2RKJ4wqKVf0Zk2tb0Lw6LKlLyrwXxmj2WrWbD9rjy82vV1e4XxHtzv24HIDIFgonYfaFmHvVMITzZn4A3L2gNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567105445</pqid></control><display><type>article</type><title>Surface state engineering of molecule―molecule interactions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>ROJAS, Geoffrey ; SIMPSON, Scott ; XUMIN CHEN ; KUNKEL, Donna A ; NITZ, Justin ; JIE XIAO ; DOWBEN, Peter A ; ZUREK, Eva ; ENDERS, Axel</creator><creatorcontrib>ROJAS, Geoffrey ; SIMPSON, Scott ; XUMIN CHEN ; KUNKEL, Donna A ; NITZ, Justin ; JIE XIAO ; DOWBEN, Peter A ; ZUREK, Eva ; ENDERS, Axel</creatorcontrib><description>Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transfer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp40254h</identifier><identifier>PMID: 22395096</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alignment ; Charge ; Charge transfer ; Chemistry ; Dipoles ; Energy levels ; Exact sciences and technology ; General and physical chemistry ; Physical chemistry ; Porphyrins ; Self assembly ; Surface physical chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-04, Vol.14 (14), p.4971-4976</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-43ada2b5624ca453bfe4aca1963e5c55f655ea950a34bb7a2f96836c9ca8b63</citedby><cites>FETCH-LOGICAL-c349t-43ada2b5624ca453bfe4aca1963e5c55f655ea950a34bb7a2f96836c9ca8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25727621$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22395096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROJAS, Geoffrey</creatorcontrib><creatorcontrib>SIMPSON, Scott</creatorcontrib><creatorcontrib>XUMIN CHEN</creatorcontrib><creatorcontrib>KUNKEL, Donna A</creatorcontrib><creatorcontrib>NITZ, Justin</creatorcontrib><creatorcontrib>JIE XIAO</creatorcontrib><creatorcontrib>DOWBEN, Peter A</creatorcontrib><creatorcontrib>ZUREK, Eva</creatorcontrib><creatorcontrib>ENDERS, Axel</creatorcontrib><title>Surface state engineering of molecule―molecule interactions</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transfer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules.</description><subject>Alignment</subject><subject>Charge</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Dipoles</subject><subject>Energy levels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Physical chemistry</subject><subject>Porphyrins</subject><subject>Self assembly</subject><subject>Surface physical chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90LtKA0EUBuBBFBOjjQ8g24girM59d4oUErxBwCL2y9nJmbiylzizW9j5Er6gT-KG3Dqr8xcfP4efkHNGbxkV5s5yu5SUK_l-QIZMahEbmsrDXU70gJyE8EEpZYqJYzLgXBhFjR6S8azzDixGoYUWI6wXRY3oi3oRNS6qmhJtV-Lv9882RkXdogfbFk0dTsmRgzLg2eaOyOzx4W3yHE9fn14m99PYCmnaWAqYA8-V5tKCVCJ3KMECM1qgsko5rRRC_xEImecJcGd0KrQ1FtJcixG5WrcuffPZYWizqggWyxJqbLqQGZ4axliqenn9r2RKJ4wqKVf0Zk2tb0Lw6LKlLyrwXxmj2WrWbD9rjy82vV1e4XxHtzv24HIDIFgonYfaFmHvVMITzZn4A3L2gNQ</recordid><startdate>20120414</startdate><enddate>20120414</enddate><creator>ROJAS, Geoffrey</creator><creator>SIMPSON, Scott</creator><creator>XUMIN CHEN</creator><creator>KUNKEL, Donna A</creator><creator>NITZ, Justin</creator><creator>JIE XIAO</creator><creator>DOWBEN, Peter A</creator><creator>ZUREK, Eva</creator><creator>ENDERS, Axel</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120414</creationdate><title>Surface state engineering of molecule―molecule interactions</title><author>ROJAS, Geoffrey ; SIMPSON, Scott ; XUMIN CHEN ; KUNKEL, Donna A ; NITZ, Justin ; JIE XIAO ; DOWBEN, Peter A ; ZUREK, Eva ; ENDERS, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-43ada2b5624ca453bfe4aca1963e5c55f655ea950a34bb7a2f96836c9ca8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alignment</topic><topic>Charge</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Dipoles</topic><topic>Energy levels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Physical chemistry</topic><topic>Porphyrins</topic><topic>Self assembly</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROJAS, Geoffrey</creatorcontrib><creatorcontrib>SIMPSON, Scott</creatorcontrib><creatorcontrib>XUMIN CHEN</creatorcontrib><creatorcontrib>KUNKEL, Donna A</creatorcontrib><creatorcontrib>NITZ, Justin</creatorcontrib><creatorcontrib>JIE XIAO</creatorcontrib><creatorcontrib>DOWBEN, Peter A</creatorcontrib><creatorcontrib>ZUREK, Eva</creatorcontrib><creatorcontrib>ENDERS, Axel</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROJAS, Geoffrey</au><au>SIMPSON, Scott</au><au>XUMIN CHEN</au><au>KUNKEL, Donna A</au><au>NITZ, Justin</au><au>JIE XIAO</au><au>DOWBEN, Peter A</au><au>ZUREK, Eva</au><au>ENDERS, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface state engineering of molecule―molecule interactions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-04-14</date><risdate>2012</risdate><volume>14</volume><issue>14</issue><spage>4971</spage><epage>4976</epage><pages>4971-4976</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transfer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22395096</pmid><doi>10.1039/c2cp40254h</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-04, Vol.14 (14), p.4971-4976 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_928911185 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Alignment Charge Charge transfer Chemistry Dipoles Energy levels Exact sciences and technology General and physical chemistry Physical chemistry Porphyrins Self assembly Surface physical chemistry |
title | Surface state engineering of molecule―molecule interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20state%20engineering%20of%20molecule%E2%80%95molecule%20interactions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=ROJAS,%20Geoffrey&rft.date=2012-04-14&rft.volume=14&rft.issue=14&rft.spage=4971&rft.epage=4976&rft.pages=4971-4976&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp40254h&rft_dat=%3Cproquest_cross%3E928911185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567105445&rft_id=info:pmid/22395096&rfr_iscdi=true |