Cantilever arrays with self-aligned nanotips of uniform height

Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2012-04, Vol.23 (13), p.135301-1-9
Hauptverfasser: Koelmans, W W, Peters, T, Berenschot, E, de Boer, M J, Siekman, M H, Abelmann, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1-9
container_issue 13
container_start_page 135301
container_title Nanotechnology
container_volume 23
creator Koelmans, W W
Peters, T
Berenschot, E
de Boer, M J
Siekman, M H
Abelmann, L
description Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.
doi_str_mv 10.1088/0957-4484/23/13/135301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928908796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928908796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fd8051d4ff0c5ee98d4ec9fcc80e9e2ec71dc146291c80f2234ff9bb8c0e2b6a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlb_guxNL2szSXabXAQpfkHBi55Dmp20ke1uTXaV_nuzVHtUeGFgeGZeeAi5BHoDVMopVcUsF0KKKeNTGFJwCkdkDLyEvCyYPCbjAzQiZzG-UwogGZySEWMCpCxhTG7npul8jZ8YMhOC2cXsy3frLGLtclP7VYNV1pim7fw2Zq3L-sa7NmyyNfrVujsnJ87UES9-5oS8Pdy_zp_yxcvj8_xukVvBRZe7StICKuEctQWikpVAq5y1kqJChnYGlQVRMgVp5RjjCVXLpbQU2bI0fEKu9n-3of3oMXZ646PFujYNtn3UiklF5UyVibz-kwTKIdVwQRNa7lEb2hgDOr0NfmPCLkF6sKwHgXoQqBnXMGSwnA4vfzr65Qarw9mv1gSwPeDbrX5v-9AkOf99_QY8y4bM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031291340</pqid></control><display><type>article</type><title>Cantilever arrays with self-aligned nanotips of uniform height</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Koelmans, W W ; Peters, T ; Berenschot, E ; de Boer, M J ; Siekman, M H ; Abelmann, L</creator><creatorcontrib>Koelmans, W W ; Peters, T ; Berenschot, E ; de Boer, M J ; Siekman, M H ; Abelmann, L</creatorcontrib><description>Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/23/13/135301</identifier><identifier>PMID: 22418861</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Arrays ; Contact ; Corners ; Imaging ; Nanocomposites ; Nanomaterials ; Nanostructure ; Tips</subject><ispartof>Nanotechnology, 2012-04, Vol.23 (13), p.135301-1-9</ispartof><rights>2012 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fd8051d4ff0c5ee98d4ec9fcc80e9e2ec71dc146291c80f2234ff9bb8c0e2b6a3</citedby><cites>FETCH-LOGICAL-c434t-fd8051d4ff0c5ee98d4ec9fcc80e9e2ec71dc146291c80f2234ff9bb8c0e2b6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/23/13/135301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22418861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koelmans, W W</creatorcontrib><creatorcontrib>Peters, T</creatorcontrib><creatorcontrib>Berenschot, E</creatorcontrib><creatorcontrib>de Boer, M J</creatorcontrib><creatorcontrib>Siekman, M H</creatorcontrib><creatorcontrib>Abelmann, L</creatorcontrib><title>Cantilever arrays with self-aligned nanotips of uniform height</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.</description><subject>Arrays</subject><subject>Contact</subject><subject>Corners</subject><subject>Imaging</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Tips</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlb_guxNL2szSXabXAQpfkHBi55Dmp20ke1uTXaV_nuzVHtUeGFgeGZeeAi5BHoDVMopVcUsF0KKKeNTGFJwCkdkDLyEvCyYPCbjAzQiZzG-UwogGZySEWMCpCxhTG7npul8jZ8YMhOC2cXsy3frLGLtclP7VYNV1pim7fw2Zq3L-sa7NmyyNfrVujsnJ87UES9-5oS8Pdy_zp_yxcvj8_xukVvBRZe7StICKuEctQWikpVAq5y1kqJChnYGlQVRMgVp5RjjCVXLpbQU2bI0fEKu9n-3of3oMXZ646PFujYNtn3UiklF5UyVibz-kwTKIdVwQRNa7lEb2hgDOr0NfmPCLkF6sKwHgXoQqBnXMGSwnA4vfzr65Qarw9mv1gSwPeDbrX5v-9AkOf99_QY8y4bM</recordid><startdate>20120406</startdate><enddate>20120406</enddate><creator>Koelmans, W W</creator><creator>Peters, T</creator><creator>Berenschot, E</creator><creator>de Boer, M J</creator><creator>Siekman, M H</creator><creator>Abelmann, L</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120406</creationdate><title>Cantilever arrays with self-aligned nanotips of uniform height</title><author>Koelmans, W W ; Peters, T ; Berenschot, E ; de Boer, M J ; Siekman, M H ; Abelmann, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fd8051d4ff0c5ee98d4ec9fcc80e9e2ec71dc146291c80f2234ff9bb8c0e2b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Contact</topic><topic>Corners</topic><topic>Imaging</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koelmans, W W</creatorcontrib><creatorcontrib>Peters, T</creatorcontrib><creatorcontrib>Berenschot, E</creatorcontrib><creatorcontrib>de Boer, M J</creatorcontrib><creatorcontrib>Siekman, M H</creatorcontrib><creatorcontrib>Abelmann, L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koelmans, W W</au><au>Peters, T</au><au>Berenschot, E</au><au>de Boer, M J</au><au>Siekman, M H</au><au>Abelmann, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cantilever arrays with self-aligned nanotips of uniform height</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2012-04-06</date><risdate>2012</risdate><volume>23</volume><issue>13</issue><spage>135301</spage><epage>1-9</epage><pages>135301-1-9</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip-sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip-sample spacing control. Uniform cantilever arrays lead to very similar tip-sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip-sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>22418861</pmid><doi>10.1088/0957-4484/23/13/135301</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2012-04, Vol.23 (13), p.135301-1-9
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_928908796
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Arrays
Contact
Corners
Imaging
Nanocomposites
Nanomaterials
Nanostructure
Tips
title Cantilever arrays with self-aligned nanotips of uniform height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cantilever%20arrays%20with%20self-aligned%20nanotips%20of%20uniform%20height&rft.jtitle=Nanotechnology&rft.au=Koelmans,%20W%20W&rft.date=2012-04-06&rft.volume=23&rft.issue=13&rft.spage=135301&rft.epage=1-9&rft.pages=135301-1-9&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/23/13/135301&rft_dat=%3Cproquest_cross%3E928908796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031291340&rft_id=info:pmid/22418861&rfr_iscdi=true