Improving GRAPPA using cross-sampled autocalibration data

In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2012-04, Vol.67 (4), p.1042-1053
Hauptverfasser: Wang, Haifeng, Liang, Dong, King, Kevin F., Nagarsekar, Gajanan, Chang, Yuchou, Ying, Leslie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 4
container_start_page 1042
container_title Magnetic resonance in medicine
container_volume 67
creator Wang, Haifeng
Liang, Dong
King, Kevin F.
Nagarsekar, Gajanan
Chang, Yuchou
Ying, Leslie
description In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.23083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928907678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928907678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</originalsourceid><addsrcrecordid>eNp1kM1OwkAYRSdGI4gufAHTnXFRmL_Oz5IQRQwoIRiXk-l0aqotxZlW5e0tFNi5-vIl597cHACuEewjCPGgcEUfEyjICeiiCOMQR5Kegi7kFIYESdoBF95_QAil5PQcdDBGJMKEdoGcFGtXfmer92C8GM7nw6D228e40vvQ62Kd2yTQdVUanWex01VWroJEV_oSnKU69_Zqf3vg9eF-OXoMpy_jyWg4DQ3FgoSUkhRZxBKmCbKxpShJqIUJIykR3HCUcoNwTBEzAmKDhBBxzNKYQy4JYxHpgdu2t9n5VVtfqSLzxua5Xtmy9kpiISFnXDTkXUvuxjubqrXLCu02CkG1FaUaUWonqmFv9q11XNjkSB7MNMCgBX6y3G7-b1KzxexQGbaJzFf295jQ7lMxTnik3p7HaiQkXiz5kxLkD36bf5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928907678</pqid></control><display><type>article</type><title>Improving GRAPPA using cross-sampled autocalibration data</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><creator>Wang, Haifeng ; Liang, Dong ; King, Kevin F. ; Nagarsekar, Gajanan ; Chang, Yuchou ; Ying, Leslie</creator><creatorcontrib>Wang, Haifeng ; Liang, Dong ; King, Kevin F. ; Nagarsekar, Gajanan ; Chang, Yuchou ; Ying, Leslie</creatorcontrib><description>In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.23083</identifier><identifier>PMID: 22135234</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ACS ; autocalibration ; Brain Mapping - methods ; Calibration ; Computer Simulation ; cross sampling ; GRAPPA ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; k-space registration ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Phantoms, Imaging</subject><ispartof>Magnetic resonance in medicine, 2012-04, Vol.67 (4), p.1042-1053</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</citedby><cites>FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.23083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.23083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22135234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>King, Kevin F.</creatorcontrib><creatorcontrib>Nagarsekar, Gajanan</creatorcontrib><creatorcontrib>Chang, Yuchou</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><title>Improving GRAPPA using cross-sampled autocalibration data</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>ACS</subject><subject>autocalibration</subject><subject>Brain Mapping - methods</subject><subject>Calibration</subject><subject>Computer Simulation</subject><subject>cross sampling</subject><subject>GRAPPA</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>k-space registration</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OwkAYRSdGI4gufAHTnXFRmL_Oz5IQRQwoIRiXk-l0aqotxZlW5e0tFNi5-vIl597cHACuEewjCPGgcEUfEyjICeiiCOMQR5Kegi7kFIYESdoBF95_QAil5PQcdDBGJMKEdoGcFGtXfmer92C8GM7nw6D228e40vvQ62Kd2yTQdVUanWex01VWroJEV_oSnKU69_Zqf3vg9eF-OXoMpy_jyWg4DQ3FgoSUkhRZxBKmCbKxpShJqIUJIykR3HCUcoNwTBEzAmKDhBBxzNKYQy4JYxHpgdu2t9n5VVtfqSLzxua5Xtmy9kpiISFnXDTkXUvuxjubqrXLCu02CkG1FaUaUWonqmFv9q11XNjkSB7MNMCgBX6y3G7-b1KzxexQGbaJzFf295jQ7lMxTnik3p7HaiQkXiz5kxLkD36bf5k</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Wang, Haifeng</creator><creator>Liang, Dong</creator><creator>King, Kevin F.</creator><creator>Nagarsekar, Gajanan</creator><creator>Chang, Yuchou</creator><creator>Ying, Leslie</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>Improving GRAPPA using cross-sampled autocalibration data</title><author>Wang, Haifeng ; Liang, Dong ; King, Kevin F. ; Nagarsekar, Gajanan ; Chang, Yuchou ; Ying, Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ACS</topic><topic>autocalibration</topic><topic>Brain Mapping - methods</topic><topic>Calibration</topic><topic>Computer Simulation</topic><topic>cross sampling</topic><topic>GRAPPA</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>k-space registration</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>King, Kevin F.</creatorcontrib><creatorcontrib>Nagarsekar, Gajanan</creatorcontrib><creatorcontrib>Chang, Yuchou</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haifeng</au><au>Liang, Dong</au><au>King, Kevin F.</au><au>Nagarsekar, Gajanan</au><au>Chang, Yuchou</au><au>Ying, Leslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving GRAPPA using cross-sampled autocalibration data</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2012-04</date><risdate>2012</risdate><volume>67</volume><issue>4</issue><spage>1042</spage><epage>1053</epage><pages>1042-1053</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22135234</pmid><doi>10.1002/mrm.23083</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2012-04, Vol.67 (4), p.1042-1053
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_928907678
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content
subjects ACS
autocalibration
Brain Mapping - methods
Calibration
Computer Simulation
cross sampling
GRAPPA
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
k-space registration
Magnetic Resonance Imaging - methods
Models, Statistical
Phantoms, Imaging
title Improving GRAPPA using cross-sampled autocalibration data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20GRAPPA%20using%20cross-sampled%20autocalibration%20data&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Wang,%20Haifeng&rft.date=2012-04&rft.volume=67&rft.issue=4&rft.spage=1042&rft.epage=1053&rft.pages=1042-1053&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.23083&rft_dat=%3Cproquest_cross%3E928907678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928907678&rft_id=info:pmid/22135234&rfr_iscdi=true