Improving GRAPPA using cross-sampled autocalibration data
In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2012-04, Vol.67 (4), p.1042-1053 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1053 |
---|---|
container_issue | 4 |
container_start_page | 1042 |
container_title | Magnetic resonance in medicine |
container_volume | 67 |
creator | Wang, Haifeng Liang, Dong King, Kevin F. Nagarsekar, Gajanan Chang, Yuchou Ying, Leslie |
description | In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.23083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928907678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928907678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</originalsourceid><addsrcrecordid>eNp1kM1OwkAYRSdGI4gufAHTnXFRmL_Oz5IQRQwoIRiXk-l0aqotxZlW5e0tFNi5-vIl597cHACuEewjCPGgcEUfEyjICeiiCOMQR5Kegi7kFIYESdoBF95_QAil5PQcdDBGJMKEdoGcFGtXfmer92C8GM7nw6D228e40vvQ62Kd2yTQdVUanWex01VWroJEV_oSnKU69_Zqf3vg9eF-OXoMpy_jyWg4DQ3FgoSUkhRZxBKmCbKxpShJqIUJIykR3HCUcoNwTBEzAmKDhBBxzNKYQy4JYxHpgdu2t9n5VVtfqSLzxua5Xtmy9kpiISFnXDTkXUvuxjubqrXLCu02CkG1FaUaUWonqmFv9q11XNjkSB7MNMCgBX6y3G7-b1KzxexQGbaJzFf295jQ7lMxTnik3p7HaiQkXiz5kxLkD36bf5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928907678</pqid></control><display><type>article</type><title>Improving GRAPPA using cross-sampled autocalibration data</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><creator>Wang, Haifeng ; Liang, Dong ; King, Kevin F. ; Nagarsekar, Gajanan ; Chang, Yuchou ; Ying, Leslie</creator><creatorcontrib>Wang, Haifeng ; Liang, Dong ; King, Kevin F. ; Nagarsekar, Gajanan ; Chang, Yuchou ; Ying, Leslie</creatorcontrib><description>In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.23083</identifier><identifier>PMID: 22135234</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ACS ; autocalibration ; Brain Mapping - methods ; Calibration ; Computer Simulation ; cross sampling ; GRAPPA ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; k-space registration ; Magnetic Resonance Imaging - methods ; Models, Statistical ; Phantoms, Imaging</subject><ispartof>Magnetic resonance in medicine, 2012-04, Vol.67 (4), p.1042-1053</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</citedby><cites>FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.23083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.23083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22135234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>King, Kevin F.</creatorcontrib><creatorcontrib>Nagarsekar, Gajanan</creatorcontrib><creatorcontrib>Chang, Yuchou</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><title>Improving GRAPPA using cross-sampled autocalibration data</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>ACS</subject><subject>autocalibration</subject><subject>Brain Mapping - methods</subject><subject>Calibration</subject><subject>Computer Simulation</subject><subject>cross sampling</subject><subject>GRAPPA</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>k-space registration</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Statistical</subject><subject>Phantoms, Imaging</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OwkAYRSdGI4gufAHTnXFRmL_Oz5IQRQwoIRiXk-l0aqotxZlW5e0tFNi5-vIl597cHACuEewjCPGgcEUfEyjICeiiCOMQR5Kegi7kFIYESdoBF95_QAil5PQcdDBGJMKEdoGcFGtXfmer92C8GM7nw6D228e40vvQ62Kd2yTQdVUanWex01VWroJEV_oSnKU69_Zqf3vg9eF-OXoMpy_jyWg4DQ3FgoSUkhRZxBKmCbKxpShJqIUJIykR3HCUcoNwTBEzAmKDhBBxzNKYQy4JYxHpgdu2t9n5VVtfqSLzxua5Xtmy9kpiISFnXDTkXUvuxjubqrXLCu02CkG1FaUaUWonqmFv9q11XNjkSB7MNMCgBX6y3G7-b1KzxexQGbaJzFf295jQ7lMxTnik3p7HaiQkXiz5kxLkD36bf5k</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Wang, Haifeng</creator><creator>Liang, Dong</creator><creator>King, Kevin F.</creator><creator>Nagarsekar, Gajanan</creator><creator>Chang, Yuchou</creator><creator>Ying, Leslie</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>Improving GRAPPA using cross-sampled autocalibration data</title><author>Wang, Haifeng ; Liang, Dong ; King, Kevin F. ; Nagarsekar, Gajanan ; Chang, Yuchou ; Ying, Leslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4283-443f1e16d6a31ebe41dd4e0d63f387c71f7c12b416c802c1888bb6fb707936653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ACS</topic><topic>autocalibration</topic><topic>Brain Mapping - methods</topic><topic>Calibration</topic><topic>Computer Simulation</topic><topic>cross sampling</topic><topic>GRAPPA</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>k-space registration</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Statistical</topic><topic>Phantoms, Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>King, Kevin F.</creatorcontrib><creatorcontrib>Nagarsekar, Gajanan</creatorcontrib><creatorcontrib>Chang, Yuchou</creatorcontrib><creatorcontrib>Ying, Leslie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haifeng</au><au>Liang, Dong</au><au>King, Kevin F.</au><au>Nagarsekar, Gajanan</au><au>Chang, Yuchou</au><au>Ying, Leslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving GRAPPA using cross-sampled autocalibration data</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2012-04</date><risdate>2012</risdate><volume>67</volume><issue>4</issue><spage>1042</spage><epage>1053</epage><pages>1042-1053</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>In conventional generalized autocalibrating partially parallel acquisitions, the autocalibration signal (ACS) lines are acquired with a frequency‐encoding direction in parallel to other undersampled lines. In this study, a cross sampling method is proposed to acquire the ACS lines orthogonal to the undersampled lines. This cross sampling method increases the amount of calibration data along the direction, where k‐space is undersampled, and especially improves the calibration accuracy when a small number of ACS lines are acquired. The cross sampling method is implemented with swapped frequency and phase encoding gradients. In addition, an iterative coregistration method is also developed to correct the inconsistency between the ACS and undersampled data, which are acquired separately in two orthogonal directions. The same calibration and reconstruction procedure as conventional generalized autocalibrating partially parallel acquisitions is then applied to the corrected data to recover the unacquired k‐space data and obtain the final image. Reconstruction results from simulations, phantom and in vivo human brain experiments have distinctly demonstrated that the proposed method, named cross‐sampled generalized autocalibrating partially parallel acquisitions, can effectively reduce the aliasing artifacts of conventional generalized autocalibrating partially parallel acquisitions when very few ACS lines are acquired, especially at high outer k‐space reduction factors. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22135234</pmid><doi>10.1002/mrm.23083</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2012-04, Vol.67 (4), p.1042-1053 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_928907678 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content |
subjects | ACS autocalibration Brain Mapping - methods Calibration Computer Simulation cross sampling GRAPPA Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods k-space registration Magnetic Resonance Imaging - methods Models, Statistical Phantoms, Imaging |
title | Improving GRAPPA using cross-sampled autocalibration data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20GRAPPA%20using%20cross-sampled%20autocalibration%20data&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Wang,%20Haifeng&rft.date=2012-04&rft.volume=67&rft.issue=4&rft.spage=1042&rft.epage=1053&rft.pages=1042-1053&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.23083&rft_dat=%3Cproquest_cross%3E928907678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928907678&rft_id=info:pmid/22135234&rfr_iscdi=true |