Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture

To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway‐compatible binary T‐DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium‐mediat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2012-05, Vol.109 (5), p.1239-1247
Hauptverfasser: Liu, Yu-Kuo, Huang, Li-Fen, Ho, Shin-Lon, Liao, Chun-Yu, Liu, Hsin-Yi, Lai, Ying-Hui, Yu, Su-May, Lu, Chung-An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1247
container_issue 5
container_start_page 1239
container_title Biotechnology and bioengineering
container_volume 109
creator Liu, Yu-Kuo
Huang, Li-Fen
Ho, Shin-Lon
Liao, Chun-Yu
Liu, Hsin-Yi
Lai, Ying-Hui
Yu, Su-May
Lu, Chung-An
description To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway‐compatible binary T‐DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium‐mediated transformation. We used the approach to produce mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM‐CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice‐derived mGM‐CSF (rmGM‐CSF) was scaled up successfully in a 2‐L bioreactor, in which the highest yield of rmGM‐CSF was 24.6 mg/L. Due to post‐translational glycosylation, the molecular weight of rmGM‐CSF was larger than that of recombinant mGM‐CSF produced in Escherichia coli. The rmGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF‐60. Biotechnol. Bioeng. 2012; 109:1239–1247. © 2011 Wiley Periodicals, Inc. The authors constructed a Gateway‐compatible binary T‐DNA destination vector for the easy establishment of a production platform for recombinant proteins in rice suspension cells. Here, the 2‐L bioreactor was used for the production of recombinant mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF), a cytokine that functions in the growth of white blood cells, in cultured rice suspension cells. The recombinant mGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell.
doi_str_mv 10.1002/bit.24394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928906315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614856971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4224-4ee9a33f1478ceeb93174f6148bba6a0540ad1f706e3a92bc98f6d143823f10f3</originalsourceid><addsrcrecordid>eNp9kU1PFTEUhhujkSu68A-Yxg2yGOjXdKZLIQokRF1c0bhpOp0zQ3Fmem07wYl_nsIFFia6OmnyvE_O6YvQa0oOKCHssHHpgAmuxBO0okRVBWGKPEUrQogseKnYDnoR41V-VrWUz9EOY5SVjNMV-vMl-Ha2yfkJ-w6Pfo6A-2CmefB2SVCMxga_uTQ9YOsHPy1FTG6cB5Pc1OPO2OQDbhbcmwTXZsEJ7OWUwX7BZmpxyqrYw-QsDs5mBwwDtvOQ5gAv0bPODBFe3c9d9PXjh_XxaXH--eTs-P15YQVjohAAynDeUVHVFqBRnFaik1TUTWOkIaUgpqVdRSRwo1hjVd3JlgpesxwiHd9Fe1vvJvhfM8SkRxdvFzET5Hu1YrUiktMyk-_-S2apIKwUnGT07V_olZ_DlO_IPsXrktYyQ_tbKP9hjAE6vQluNGHRlOjb6nSuTt9Vl9k398K5GaF9JB-6ysDhFrh2Ayz_Numjs_WDstgmXEzw-zFhwk8tK16V-tunE31Rld_XP6TSF_wG3MezfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>929385186</pqid></control><display><type>article</type><title>Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Liu, Yu-Kuo ; Huang, Li-Fen ; Ho, Shin-Lon ; Liao, Chun-Yu ; Liu, Hsin-Yi ; Lai, Ying-Hui ; Yu, Su-May ; Lu, Chung-An</creator><creatorcontrib>Liu, Yu-Kuo ; Huang, Li-Fen ; Ho, Shin-Lon ; Liao, Chun-Yu ; Liu, Hsin-Yi ; Lai, Ying-Hui ; Yu, Su-May ; Lu, Chung-An</creatorcontrib><description>To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway‐compatible binary T‐DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium‐mediated transformation. We used the approach to produce mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM‐CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice‐derived mGM‐CSF (rmGM‐CSF) was scaled up successfully in a 2‐L bioreactor, in which the highest yield of rmGM‐CSF was 24.6 mg/L. Due to post‐translational glycosylation, the molecular weight of rmGM‐CSF was larger than that of recombinant mGM‐CSF produced in Escherichia coli. The rmGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF‐60. Biotechnol. Bioeng. 2012; 109:1239–1247. © 2011 Wiley Periodicals, Inc. The authors constructed a Gateway‐compatible binary T‐DNA destination vector for the easy establishment of a production platform for recombinant proteins in rice suspension cells. Here, the 2‐L bioreactor was used for the production of recombinant mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF), a cytokine that functions in the growth of white blood cells, in cultured rice suspension cells. The recombinant mGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.24394</identifier><identifier>PMID: 22125231</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Agrobacterium - genetics ; Animals ; bioreactor ; Bioreactors ; Biotechnology - methods ; Cell culture ; Cell Culture Techniques ; Culture Media - chemistry ; DNA, Bacterial ; Escherichia coli ; Escherichia coli - genetics ; Gene expression ; Genetic Vectors ; Granulocyte-Macrophage Colony-Stimulating Factor - chemistry ; Granulocyte-Macrophage Colony-Stimulating Factor - genetics ; Granulocyte-Macrophage Colony-Stimulating Factor - metabolism ; mGM-CSF ; Mice ; Molecular Weight ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Proteins ; recombinant protein production ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; rice suspension cell ; Rodents ; Signal transduction ; sugar-depletion induced promoter ; Transgenic plants</subject><ispartof>Biotechnology and bioengineering, 2012-05, Vol.109 (5), p.1239-1247</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4224-4ee9a33f1478ceeb93174f6148bba6a0540ad1f706e3a92bc98f6d143823f10f3</citedby><cites>FETCH-LOGICAL-c4224-4ee9a33f1478ceeb93174f6148bba6a0540ad1f706e3a92bc98f6d143823f10f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.24394$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.24394$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22125231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yu-Kuo</creatorcontrib><creatorcontrib>Huang, Li-Fen</creatorcontrib><creatorcontrib>Ho, Shin-Lon</creatorcontrib><creatorcontrib>Liao, Chun-Yu</creatorcontrib><creatorcontrib>Liu, Hsin-Yi</creatorcontrib><creatorcontrib>Lai, Ying-Hui</creatorcontrib><creatorcontrib>Yu, Su-May</creatorcontrib><creatorcontrib>Lu, Chung-An</creatorcontrib><title>Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway‐compatible binary T‐DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium‐mediated transformation. We used the approach to produce mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM‐CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice‐derived mGM‐CSF (rmGM‐CSF) was scaled up successfully in a 2‐L bioreactor, in which the highest yield of rmGM‐CSF was 24.6 mg/L. Due to post‐translational glycosylation, the molecular weight of rmGM‐CSF was larger than that of recombinant mGM‐CSF produced in Escherichia coli. The rmGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF‐60. Biotechnol. Bioeng. 2012; 109:1239–1247. © 2011 Wiley Periodicals, Inc. The authors constructed a Gateway‐compatible binary T‐DNA destination vector for the easy establishment of a production platform for recombinant proteins in rice suspension cells. Here, the 2‐L bioreactor was used for the production of recombinant mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF), a cytokine that functions in the growth of white blood cells, in cultured rice suspension cells. The recombinant mGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell.</description><subject>Agrobacterium - genetics</subject><subject>Animals</subject><subject>bioreactor</subject><subject>Bioreactors</subject><subject>Biotechnology - methods</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Culture Media - chemistry</subject><subject>DNA, Bacterial</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Gene expression</subject><subject>Genetic Vectors</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - chemistry</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</subject><subject>mGM-CSF</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Plants, Genetically Modified</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>recombinant protein production</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>rice suspension cell</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>sugar-depletion induced promoter</subject><subject>Transgenic plants</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1PFTEUhhujkSu68A-Yxg2yGOjXdKZLIQokRF1c0bhpOp0zQ3Fmem07wYl_nsIFFia6OmnyvE_O6YvQa0oOKCHssHHpgAmuxBO0okRVBWGKPEUrQogseKnYDnoR41V-VrWUz9EOY5SVjNMV-vMl-Ha2yfkJ-w6Pfo6A-2CmefB2SVCMxga_uTQ9YOsHPy1FTG6cB5Pc1OPO2OQDbhbcmwTXZsEJ7OWUwX7BZmpxyqrYw-QsDs5mBwwDtvOQ5gAv0bPODBFe3c9d9PXjh_XxaXH--eTs-P15YQVjohAAynDeUVHVFqBRnFaik1TUTWOkIaUgpqVdRSRwo1hjVd3JlgpesxwiHd9Fe1vvJvhfM8SkRxdvFzET5Hu1YrUiktMyk-_-S2apIKwUnGT07V_olZ_DlO_IPsXrktYyQ_tbKP9hjAE6vQluNGHRlOjb6nSuTt9Vl9k398K5GaF9JB-6ysDhFrh2Ayz_Numjs_WDstgmXEzw-zFhwk8tK16V-tunE31Rld_XP6TSF_wG3MezfA</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Liu, Yu-Kuo</creator><creator>Huang, Li-Fen</creator><creator>Ho, Shin-Lon</creator><creator>Liao, Chun-Yu</creator><creator>Liu, Hsin-Yi</creator><creator>Lai, Ying-Hui</creator><creator>Yu, Su-May</creator><creator>Lu, Chung-An</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201205</creationdate><title>Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture</title><author>Liu, Yu-Kuo ; Huang, Li-Fen ; Ho, Shin-Lon ; Liao, Chun-Yu ; Liu, Hsin-Yi ; Lai, Ying-Hui ; Yu, Su-May ; Lu, Chung-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4224-4ee9a33f1478ceeb93174f6148bba6a0540ad1f706e3a92bc98f6d143823f10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agrobacterium - genetics</topic><topic>Animals</topic><topic>bioreactor</topic><topic>Bioreactors</topic><topic>Biotechnology - methods</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Culture Media - chemistry</topic><topic>DNA, Bacterial</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Gene expression</topic><topic>Genetic Vectors</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - chemistry</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</topic><topic>mGM-CSF</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Plants, Genetically Modified</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>recombinant protein production</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>rice suspension cell</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>sugar-depletion induced promoter</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu-Kuo</creatorcontrib><creatorcontrib>Huang, Li-Fen</creatorcontrib><creatorcontrib>Ho, Shin-Lon</creatorcontrib><creatorcontrib>Liao, Chun-Yu</creatorcontrib><creatorcontrib>Liu, Hsin-Yi</creatorcontrib><creatorcontrib>Lai, Ying-Hui</creatorcontrib><creatorcontrib>Yu, Su-May</creatorcontrib><creatorcontrib>Lu, Chung-An</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu-Kuo</au><au>Huang, Li-Fen</au><au>Ho, Shin-Lon</au><au>Liao, Chun-Yu</au><au>Liu, Hsin-Yi</au><au>Lai, Ying-Hui</au><au>Yu, Su-May</au><au>Lu, Chung-An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2012-05</date><risdate>2012</risdate><volume>109</volume><issue>5</issue><spage>1239</spage><epage>1247</epage><pages>1239-1247</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway‐compatible binary T‐DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium‐mediated transformation. We used the approach to produce mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM‐CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice‐derived mGM‐CSF (rmGM‐CSF) was scaled up successfully in a 2‐L bioreactor, in which the highest yield of rmGM‐CSF was 24.6 mg/L. Due to post‐translational glycosylation, the molecular weight of rmGM‐CSF was larger than that of recombinant mGM‐CSF produced in Escherichia coli. The rmGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF‐60. Biotechnol. Bioeng. 2012; 109:1239–1247. © 2011 Wiley Periodicals, Inc. The authors constructed a Gateway‐compatible binary T‐DNA destination vector for the easy establishment of a production platform for recombinant proteins in rice suspension cells. Here, the 2‐L bioreactor was used for the production of recombinant mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF), a cytokine that functions in the growth of white blood cells, in cultured rice suspension cells. The recombinant mGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22125231</pmid><doi>10.1002/bit.24394</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2012-05, Vol.109 (5), p.1239-1247
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_928906315
source MEDLINE; Access via Wiley Online Library
subjects Agrobacterium - genetics
Animals
bioreactor
Bioreactors
Biotechnology - methods
Cell culture
Cell Culture Techniques
Culture Media - chemistry
DNA, Bacterial
Escherichia coli
Escherichia coli - genetics
Gene expression
Genetic Vectors
Granulocyte-Macrophage Colony-Stimulating Factor - chemistry
Granulocyte-Macrophage Colony-Stimulating Factor - genetics
Granulocyte-Macrophage Colony-Stimulating Factor - metabolism
mGM-CSF
Mice
Molecular Weight
Oryza - genetics
Oryza - metabolism
Oryza sativa
Plants, Genetically Modified
Promoter Regions, Genetic
Proteins
recombinant protein production
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
rice suspension cell
Rodents
Signal transduction
sugar-depletion induced promoter
Transgenic plants
title Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20mouse%20granulocyte-macrophage%20colony-stimulating%20factor%20by%20gateway%20technology%20and%20transgenic%20rice%20cell%20culture&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Liu,%20Yu-Kuo&rft.date=2012-05&rft.volume=109&rft.issue=5&rft.spage=1239&rft.epage=1247&rft.pages=1239-1247&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.24394&rft_dat=%3Cproquest_cross%3E2614856971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=929385186&rft_id=info:pmid/22125231&rfr_iscdi=true