Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals
We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α, playing a role analogou...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 1), p.021105-021105, Article 021105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 021105 |
---|---|
container_issue | 2 Pt 1 |
container_start_page | 021105 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 84 |
creator | Buonsante, P Burioni, R Vezzani, A |
description | We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a single-long-jump approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution as a function of α and of the dynamic exponent z associated with the scaling length of the process. We show that our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those pertaining to uncorrelated Lévy-walk models. |
doi_str_mv | 10.1103/PhysRevE.84.021105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928904554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928904554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-a2beaae9b80245e68a5fc7deffa8ede490d41c029dd66753fa02a980841bb4553</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EoqVwARYoO1Yp_k2cJarKj1SJCpW15dgTGpQ4xU6LciTOwcVIaMtqRjPvPc18CF0TPCUEs7vluguvsJtPJZ9i2o_ECRoTIXBMWZqcDj3LYpYKMUIXIXxgzCiT_ByNKMmozHg6RsuV1y5sGt9G2tkoGF2V7j0qXfS5BWfWYKP2q4n_lu3aA8S2rMGFsnG6ihY_37uuV-pQGt-FVlfhEp0VfYGrQ52gt4f5avYUL14en2f3i9gwTNtY0xy0hiyXmHIBidSiMKmFotASLPAMW04Mppm1SZIKVmhMdSax5CTPuRBsgm73uRvf9KeGVtVlMFBV2kGzDWp4EPdC3ivpXml8E4KHQm18WWvfKYLVAFIdQSrJ1R5kb7o5xG_zGuy_5UiO_QIaPHJ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928904554</pqid></control><display><type>article</type><title>Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals</title><source>American Physical Society Journals</source><creator>Buonsante, P ; Burioni, R ; Vezzani, A</creator><creatorcontrib>Buonsante, P ; Burioni, R ; Vezzani, A</creatorcontrib><description>We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a single-long-jump approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution as a function of α and of the dynamic exponent z associated with the scaling length of the process. We show that our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those pertaining to uncorrelated Lévy-walk models.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.84.021105</identifier><identifier>PMID: 21928947</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 1), p.021105-021105, Article 021105</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-a2beaae9b80245e68a5fc7deffa8ede490d41c029dd66753fa02a980841bb4553</citedby><cites>FETCH-LOGICAL-c302t-a2beaae9b80245e68a5fc7deffa8ede490d41c029dd66753fa02a980841bb4553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21928947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buonsante, P</creatorcontrib><creatorcontrib>Burioni, R</creatorcontrib><creatorcontrib>Vezzani, A</creatorcontrib><title>Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a single-long-jump approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution as a function of α and of the dynamic exponent z associated with the scaling length of the process. We show that our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those pertaining to uncorrelated Lévy-walk models.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EoqVwARYoO1Yp_k2cJarKj1SJCpW15dgTGpQ4xU6LciTOwcVIaMtqRjPvPc18CF0TPCUEs7vluguvsJtPJZ9i2o_ECRoTIXBMWZqcDj3LYpYKMUIXIXxgzCiT_ByNKMmozHg6RsuV1y5sGt9G2tkoGF2V7j0qXfS5BWfWYKP2q4n_lu3aA8S2rMGFsnG6ihY_37uuV-pQGt-FVlfhEp0VfYGrQ52gt4f5avYUL14en2f3i9gwTNtY0xy0hiyXmHIBidSiMKmFotASLPAMW04Mppm1SZIKVmhMdSax5CTPuRBsgm73uRvf9KeGVtVlMFBV2kGzDWp4EPdC3ivpXml8E4KHQm18WWvfKYLVAFIdQSrJ1R5kb7o5xG_zGuy_5UiO_QIaPHJ5</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Buonsante, P</creator><creator>Burioni, R</creator><creator>Vezzani, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201108</creationdate><title>Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals</title><author>Buonsante, P ; Burioni, R ; Vezzani, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-a2beaae9b80245e68a5fc7deffa8ede490d41c029dd66753fa02a980841bb4553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Buonsante, P</creatorcontrib><creatorcontrib>Burioni, R</creatorcontrib><creatorcontrib>Vezzani, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buonsante, P</au><au>Burioni, R</au><au>Vezzani, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2011-08</date><risdate>2011</risdate><volume>84</volume><issue>2 Pt 1</issue><spage>021105</spage><epage>021105</epage><pages>021105-021105</pages><artnum>021105</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a single-long-jump approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution as a function of α and of the dynamic exponent z associated with the scaling length of the process. We show that our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those pertaining to uncorrelated Lévy-walk models.</abstract><cop>United States</cop><pmid>21928947</pmid><doi>10.1103/PhysRevE.84.021105</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 1), p.021105-021105, Article 021105 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_928904554 |
source | American Physical Society Journals |
title | Transport and scaling in quenched two- and three-dimensional Lévy quasicrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20and%20scaling%20in%20quenched%20two-%20and%20three-dimensional%20L%C3%A9vy%20quasicrystals&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Buonsante,%20P&rft.date=2011-08&rft.volume=84&rft.issue=2%20Pt%201&rft.spage=021105&rft.epage=021105&rft.pages=021105-021105&rft.artnum=021105&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.84.021105&rft_dat=%3Cproquest_cross%3E928904554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928904554&rft_id=info:pmid/21928947&rfr_iscdi=true |