Enhanced Separation Performance of PVDF/PVP-g-MMT Nanocomposite Ultrafiltration Membrane Based on the NVP-Grafted Polymerization Modification of Montmorillonite (MMT)

A novel hydrophilic nanocomposite additive (PVP-g-MMT), coupling of hydrophilic modifier, self-dispersant, and pore-forming agent (porogen), was synthesized by the surface modification of montmorillonite (MMT) with N-vinylpyrrolidone (NVP) via “grafting from” polymerization in the presence of H2O2–N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-03, Vol.28 (10), p.4776-4786
Hauptverfasser: Wang, Panpan, Ma, Jun, Wang, Zhenghui, Shi, Fengmei, Liu, Qianliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel hydrophilic nanocomposite additive (PVP-g-MMT), coupling of hydrophilic modifier, self-dispersant, and pore-forming agent (porogen), was synthesized by the surface modification of montmorillonite (MMT) with N-vinylpyrrolidone (NVP) via “grafting from” polymerization in the presence of H2O2–NH3·H2O as the initiator, and then the nanocomposite membrane of poly(vinylidene fluoride) (PVDF) and PVP-g-MMT was fabricated by wet phase inversion onto clean glass plates. The existence and dispersion of PVP-g-MMT had a great role on structures, morphologies, surface composition, and chemistry of the as-prepared nanocomposite membranes confirmed by varieties of spectroscopic and microscopic characterization techniques, all of which were the correlated functions of PVP-g-MMT content in casting solution. By using the dead-end filtration of protein aqueous solution, the performance of the membrane was evaluated. It was seen that all of the nanocomposite membranes showed obvious improvement of water flux and proper BSA rejection ratio, compared to the control PVDF membrane. Meanwhile, dynamic BSA fouling resistance and flux recovery properties were also greatly enhanced due to the changes of surface hydrophilicity and morphologies. All the experimental results indicated that the as-prepared PVDF nanocomposite membranes showed better separation performances than the control PVDF membrane. Hopefully, the demonstrated method of hydrophilic nanocomposite additive synthesis would be applied for commonly hydroxyl group-containing inorganic nanoparticles, which was favorable to fabricate hydrophilic nanoparticle-enhanced polymer membranes for water treatment.
ISSN:0743-7463
1520-5827
DOI:10.1021/la203494z