First application of total skin electron beam irradiation in Greece: Setup, measurements and dosimetry
Abstract Total Skin Electron Beam (TSEB) irradiation is considered as the treatment of choice for cutaneous T-cell lymphoma internationally, for either curative purposes or palliative care. An attempt for the first application of this external radiation therapy technique in Greece took place at the...
Gespeichert in:
Veröffentlicht in: | Physica medica 2012-04, Vol.28 (2), p.174-182 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Total Skin Electron Beam (TSEB) irradiation is considered as the treatment of choice for cutaneous T-cell lymphoma internationally, for either curative purposes or palliative care. An attempt for the first application of this external radiation therapy technique in Greece took place at the Radiation Therapy Unit of 2nd Department of Radiology of University of Athens at University General Hospital “Attikon”. TSEB modality was developed on a linear accelerator VARIAN Clinac 2100C. To create a uniform and sufficiently large field ( ≈ 200 cm × 80 cm ) at SSD = 380 cm , two symmetrical 6 MeV electron beams are combined with 17.5° tilts concerning the horizontal direction. An immobilization system was constructed to support patient during treatment and to modulate the composite electron field. Irradiation procedure demands a standing patient that takes, in total, six treatment positions. For the confirmation of treatment suitability and the determination of physical features of the clinical electron field, specific measurements were carried out using a parallel-plate ionization chamber and TLDs at water equivalent plastic and anthropomorphic phantoms. Measurements at the referred conditions showed a homogeneous total field with intensity variation of ±2% in the longitudinal axis and ±4% at horizontal axis. The mean energy of the composite field ( E ¯ o ) is 3.4 MeV, the most probable energy ( E p , 0 ) is 4.4 MeV and the half-value depth in water ( R 50 ) is 1.5 g/cm2 . The maximum X-ray background of the TSEB field is 2.1% at head and feet. The above results lead us to conclude that TSEB treatment using “Six-dual-field” technique can be applied in our department safely. |
---|---|
ISSN: | 1120-1797 1724-191X |
DOI: | 10.1016/j.ejmp.2011.03.007 |