A self-referential outlier detection method for quantitative motor unit action potential analysis
Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It wo...
Gespeichert in:
Veröffentlicht in: | Medical hypotheses 2012-04, Vol.78 (4), p.430-431 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 4 |
container_start_page | 430 |
container_title | Medical hypotheses |
container_volume | 78 |
creator | Sheean, Geoffrey L |
description | Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data. |
doi_str_mv | 10.1016/j.mehy.2011.12.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927832816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0306987712000059</els_id><sourcerecordid>927832816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</originalsourceid><addsrcrecordid>eNp9kU1r3DAURUVJaaZp_0AXwbus7OrJsixDKISQfkCgi7ZroZGeiaayNZHkwPz7yMy0iyyyEohzL7xzCfkEtAEK4vOumfDh0DAK0ABrKLRvyAa6ltWs7_szsqEtFfUg-_6cvE9pRykdeCvfkXPGmOwEExuib6qEfqwjjhhxzk77KizZO4yVxYwmuzBXE-aHYKsxxOpx0YXKOrsnrKaQy9cyu1zpI7kP-dSiZ-0PyaUP5O2ofcKPp_eC_Pl69_v2e33_89uP25v72nCgue46y7SRMArOh6GlRnLglFEh6ai3XA582FrLhdCgJXZCWhwp9JyN5RDOeXtBro69-xgeF0xZTS4Z9F7PGJakBtbLlkkQhWRH0sSQUrlc7aObdDwooGo1q3ZqNatWswqYKmZL6PJUv2wntP8j_1QW4PoIYDnyqfhTyTicDVoXi0Zlg3u9_8uLuPFudkb7v3jAtAtLLEKTApVKQP1at12nBVZmpd3QPgMxCp-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927832816</pqid></control><display><type>article</type><title>A self-referential outlier detection method for quantitative motor unit action potential analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sheean, Geoffrey L</creator><creatorcontrib>Sheean, Geoffrey L</creatorcontrib><description>Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.</description><identifier>ISSN: 0306-9877</identifier><identifier>EISSN: 1532-2777</identifier><identifier>DOI: 10.1016/j.mehy.2011.12.013</identifier><identifier>PMID: 22285626</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Data Interpretation, Statistical ; Electromyography - methods ; Humans ; Internal Medicine ; Muscular Diseases - diagnosis ; Recruitment, Neurophysiological - physiology</subject><ispartof>Medical hypotheses, 2012-04, Vol.78 (4), p.430-431</ispartof><rights>2012</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</citedby><cites>FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mehy.2011.12.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22285626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheean, Geoffrey L</creatorcontrib><title>A self-referential outlier detection method for quantitative motor unit action potential analysis</title><title>Medical hypotheses</title><addtitle>Med Hypotheses</addtitle><description>Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.</description><subject>Action Potentials - physiology</subject><subject>Data Interpretation, Statistical</subject><subject>Electromyography - methods</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Muscular Diseases - diagnosis</subject><subject>Recruitment, Neurophysiological - physiology</subject><issn>0306-9877</issn><issn>1532-2777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAURUVJaaZp_0AXwbus7OrJsixDKISQfkCgi7ZroZGeiaayNZHkwPz7yMy0iyyyEohzL7xzCfkEtAEK4vOumfDh0DAK0ABrKLRvyAa6ltWs7_szsqEtFfUg-_6cvE9pRykdeCvfkXPGmOwEExuib6qEfqwjjhhxzk77KizZO4yVxYwmuzBXE-aHYKsxxOpx0YXKOrsnrKaQy9cyu1zpI7kP-dSiZ-0PyaUP5O2ofcKPp_eC_Pl69_v2e33_89uP25v72nCgue46y7SRMArOh6GlRnLglFEh6ai3XA582FrLhdCgJXZCWhwp9JyN5RDOeXtBro69-xgeF0xZTS4Z9F7PGJakBtbLlkkQhWRH0sSQUrlc7aObdDwooGo1q3ZqNatWswqYKmZL6PJUv2wntP8j_1QW4PoIYDnyqfhTyTicDVoXi0Zlg3u9_8uLuPFudkb7v3jAtAtLLEKTApVKQP1at12nBVZmpd3QPgMxCp-M</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Sheean, Geoffrey L</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>A self-referential outlier detection method for quantitative motor unit action potential analysis</title><author>Sheean, Geoffrey L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Data Interpretation, Statistical</topic><topic>Electromyography - methods</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Muscular Diseases - diagnosis</topic><topic>Recruitment, Neurophysiological - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheean, Geoffrey L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical hypotheses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheean, Geoffrey L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-referential outlier detection method for quantitative motor unit action potential analysis</atitle><jtitle>Medical hypotheses</jtitle><addtitle>Med Hypotheses</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>78</volume><issue>4</issue><spage>430</spage><epage>431</epage><pages>430-431</pages><issn>0306-9877</issn><eissn>1532-2777</eissn><abstract>Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>22285626</pmid><doi>10.1016/j.mehy.2011.12.013</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-9877 |
ispartof | Medical hypotheses, 2012-04, Vol.78 (4), p.430-431 |
issn | 0306-9877 1532-2777 |
language | eng |
recordid | cdi_proquest_miscellaneous_927832816 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Action Potentials - physiology Data Interpretation, Statistical Electromyography - methods Humans Internal Medicine Muscular Diseases - diagnosis Recruitment, Neurophysiological - physiology |
title | A self-referential outlier detection method for quantitative motor unit action potential analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-referential%20outlier%20detection%20method%20for%20quantitative%20motor%20unit%20action%20potential%20analysis&rft.jtitle=Medical%20hypotheses&rft.au=Sheean,%20Geoffrey%20L&rft.date=2012-04-01&rft.volume=78&rft.issue=4&rft.spage=430&rft.epage=431&rft.pages=430-431&rft.issn=0306-9877&rft.eissn=1532-2777&rft_id=info:doi/10.1016/j.mehy.2011.12.013&rft_dat=%3Cproquest_cross%3E927832816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927832816&rft_id=info:pmid/22285626&rft_els_id=1_s2_0_S0306987712000059&rfr_iscdi=true |