A self-referential outlier detection method for quantitative motor unit action potential analysis

Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical hypotheses 2012-04, Vol.78 (4), p.430-431
1. Verfasser: Sheean, Geoffrey L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 4
container_start_page 430
container_title Medical hypotheses
container_volume 78
creator Sheean, Geoffrey L
description Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.
doi_str_mv 10.1016/j.mehy.2011.12.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927832816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0306987712000059</els_id><sourcerecordid>927832816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</originalsourceid><addsrcrecordid>eNp9kU1r3DAURUVJaaZp_0AXwbus7OrJsixDKISQfkCgi7ZroZGeiaayNZHkwPz7yMy0iyyyEohzL7xzCfkEtAEK4vOumfDh0DAK0ABrKLRvyAa6ltWs7_szsqEtFfUg-_6cvE9pRykdeCvfkXPGmOwEExuib6qEfqwjjhhxzk77KizZO4yVxYwmuzBXE-aHYKsxxOpx0YXKOrsnrKaQy9cyu1zpI7kP-dSiZ-0PyaUP5O2ofcKPp_eC_Pl69_v2e33_89uP25v72nCgue46y7SRMArOh6GlRnLglFEh6ai3XA582FrLhdCgJXZCWhwp9JyN5RDOeXtBro69-xgeF0xZTS4Z9F7PGJakBtbLlkkQhWRH0sSQUrlc7aObdDwooGo1q3ZqNatWswqYKmZL6PJUv2wntP8j_1QW4PoIYDnyqfhTyTicDVoXi0Zlg3u9_8uLuPFudkb7v3jAtAtLLEKTApVKQP1at12nBVZmpd3QPgMxCp-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927832816</pqid></control><display><type>article</type><title>A self-referential outlier detection method for quantitative motor unit action potential analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sheean, Geoffrey L</creator><creatorcontrib>Sheean, Geoffrey L</creatorcontrib><description>Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.</description><identifier>ISSN: 0306-9877</identifier><identifier>EISSN: 1532-2777</identifier><identifier>DOI: 10.1016/j.mehy.2011.12.013</identifier><identifier>PMID: 22285626</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Action Potentials - physiology ; Data Interpretation, Statistical ; Electromyography - methods ; Humans ; Internal Medicine ; Muscular Diseases - diagnosis ; Recruitment, Neurophysiological - physiology</subject><ispartof>Medical hypotheses, 2012-04, Vol.78 (4), p.430-431</ispartof><rights>2012</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</citedby><cites>FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mehy.2011.12.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22285626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheean, Geoffrey L</creatorcontrib><title>A self-referential outlier detection method for quantitative motor unit action potential analysis</title><title>Medical hypotheses</title><addtitle>Med Hypotheses</addtitle><description>Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.</description><subject>Action Potentials - physiology</subject><subject>Data Interpretation, Statistical</subject><subject>Electromyography - methods</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Muscular Diseases - diagnosis</subject><subject>Recruitment, Neurophysiological - physiology</subject><issn>0306-9877</issn><issn>1532-2777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAURUVJaaZp_0AXwbus7OrJsixDKISQfkCgi7ZroZGeiaayNZHkwPz7yMy0iyyyEohzL7xzCfkEtAEK4vOumfDh0DAK0ABrKLRvyAa6ltWs7_szsqEtFfUg-_6cvE9pRykdeCvfkXPGmOwEExuib6qEfqwjjhhxzk77KizZO4yVxYwmuzBXE-aHYKsxxOpx0YXKOrsnrKaQy9cyu1zpI7kP-dSiZ-0PyaUP5O2ofcKPp_eC_Pl69_v2e33_89uP25v72nCgue46y7SRMArOh6GlRnLglFEh6ai3XA582FrLhdCgJXZCWhwp9JyN5RDOeXtBro69-xgeF0xZTS4Z9F7PGJakBtbLlkkQhWRH0sSQUrlc7aObdDwooGo1q3ZqNatWswqYKmZL6PJUv2wntP8j_1QW4PoIYDnyqfhTyTicDVoXi0Zlg3u9_8uLuPFudkb7v3jAtAtLLEKTApVKQP1at12nBVZmpd3QPgMxCp-M</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Sheean, Geoffrey L</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>A self-referential outlier detection method for quantitative motor unit action potential analysis</title><author>Sheean, Geoffrey L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-55d2ac81f6449930c8414020680fab48949bdd466a1a8e568def01742f5624443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Data Interpretation, Statistical</topic><topic>Electromyography - methods</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Muscular Diseases - diagnosis</topic><topic>Recruitment, Neurophysiological - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheean, Geoffrey L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical hypotheses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheean, Geoffrey L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-referential outlier detection method for quantitative motor unit action potential analysis</atitle><jtitle>Medical hypotheses</jtitle><addtitle>Med Hypotheses</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>78</volume><issue>4</issue><spage>430</spage><epage>431</epage><pages>430-431</pages><issn>0306-9877</issn><eissn>1532-2777</eissn><abstract>Abstract Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>22285626</pmid><doi>10.1016/j.mehy.2011.12.013</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-9877
ispartof Medical hypotheses, 2012-04, Vol.78 (4), p.430-431
issn 0306-9877
1532-2777
language eng
recordid cdi_proquest_miscellaneous_927832816
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials - physiology
Data Interpretation, Statistical
Electromyography - methods
Humans
Internal Medicine
Muscular Diseases - diagnosis
Recruitment, Neurophysiological - physiology
title A self-referential outlier detection method for quantitative motor unit action potential analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-referential%20outlier%20detection%20method%20for%20quantitative%20motor%20unit%20action%20potential%20analysis&rft.jtitle=Medical%20hypotheses&rft.au=Sheean,%20Geoffrey%20L&rft.date=2012-04-01&rft.volume=78&rft.issue=4&rft.spage=430&rft.epage=431&rft.pages=430-431&rft.issn=0306-9877&rft.eissn=1532-2777&rft_id=info:doi/10.1016/j.mehy.2011.12.013&rft_dat=%3Cproquest_cross%3E927832816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927832816&rft_id=info:pmid/22285626&rft_els_id=1_s2_0_S0306987712000059&rfr_iscdi=true