Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments

► We present some improvements on SVD-based methods for source localization in MEG. ► We concentrate in practical implementations for use in MEG commercial equipment. ► These improvements are tested in a practical case of auditive stimulation. ► Some strategies are proposed that can be implemented i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2012-04, Vol.205 (2), p.312-323
Hauptverfasser: de Hoyos, A., Portillo, J., Portillo, I., Marín, P., Maestú, F., Poch-Broto, J., Ortiz, T., Hernando, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 2
container_start_page 312
container_title Journal of neuroscience methods
container_volume 205
creator de Hoyos, A.
Portillo, J.
Portillo, I.
Marín, P.
Maestú, F.
Poch-Broto, J.
Ortiz, T.
Hernando, Antonio
description ► We present some improvements on SVD-based methods for source localization in MEG. ► We concentrate in practical implementations for use in MEG commercial equipment. ► These improvements are tested in a practical case of auditive stimulation. ► Some strategies are proposed that can be implemented in commercial equipments. ► We focus on real, clinical scenarios. The present work shows some improvements realized on practical aspects of the implementation of Singular Value Decomposition (SVD) methods to localize the sources of neural activity by means of magnetoencephalograph (MEG). Two methods have been improved and compared i.e. a spatial filter, the Linearly Constrained Minimum Variance Beamformer (LCMV) method, and a signal subspace method that is an implementation of the MUSIC (Multiple Signal Classification) method due to Mosher et al. (1992). It also shows the performance of both methods comparing three different averaging procedures. The influence of the correct selection of the noise subspace dimension has been analyzed. Using acoustic stimulus for real patient measurements, we discuss the relevant differences of both methods and propose an adequate strategy for future diagnosis based on correct source localization.
doi_str_mv 10.1016/j.jneumeth.2012.01.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927832355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027012000271</els_id><sourcerecordid>927832355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ccb6cec610302d72222d4ec321161113db74fe1f6063d1a7fd3096115a7e64103</originalsourceid><addsrcrecordid>eNqFkMlqIzEQhkWYEDvLKwTd5tROSbIl-zZDM4vBJocs5CZkqZrIdEseqdswefrIcTzXKQrqUN9fy0_ILYMJAybvtpNtwKHD_nXCgfEJsJL8jIzZXPFKqvnLFzIu4KwCrmBELnPeAsB0AfKCjDgXAtRCjEmqY7czyecYqAmO-m6X4h47DH2msaGrev380Vg_PSxrmuOQLNI2WtP6N9P7IuvRvgb_Z8BMm5jokJH6QBOaltrWB19QimHvUwwfY6_JeWPajDef9Yo8_fzxWP-uVve_lvX3VWWFVH1l7UZatJKBAO4UL-GmaAVnTDLGhNuoaYOskSCFY0Y1TsCidGZGoZwW1RX5epxbPjpc1-vOZ4ttawLGIesFV3PBxWxWSHkkbYo5J2z0LvnOpL-agT7Yrbf6ZLc-2K2BleRFePu5Yth06P7JTv4W4NsRwPLo3mPS2XoMFp1PaHvtov_fjnfeSpVv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927832355</pqid></control><display><type>article</type><title>Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de Hoyos, A. ; Portillo, J. ; Portillo, I. ; Marín, P. ; Maestú, F. ; Poch-Broto, J. ; Ortiz, T. ; Hernando, Antonio</creator><creatorcontrib>de Hoyos, A. ; Portillo, J. ; Portillo, I. ; Marín, P. ; Maestú, F. ; Poch-Broto, J. ; Ortiz, T. ; Hernando, Antonio</creatorcontrib><description>► We present some improvements on SVD-based methods for source localization in MEG. ► We concentrate in practical implementations for use in MEG commercial equipment. ► These improvements are tested in a practical case of auditive stimulation. ► Some strategies are proposed that can be implemented in commercial equipments. ► We focus on real, clinical scenarios. The present work shows some improvements realized on practical aspects of the implementation of Singular Value Decomposition (SVD) methods to localize the sources of neural activity by means of magnetoencephalograph (MEG). Two methods have been improved and compared i.e. a spatial filter, the Linearly Constrained Minimum Variance Beamformer (LCMV) method, and a signal subspace method that is an implementation of the MUSIC (Multiple Signal Classification) method due to Mosher et al. (1992). It also shows the performance of both methods comparing three different averaging procedures. The influence of the correct selection of the noise subspace dimension has been analyzed. Using acoustic stimulus for real patient measurements, we discuss the relevant differences of both methods and propose an adequate strategy for future diagnosis based on correct source localization.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2012.01.012</identifier><identifier>PMID: 22330793</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Algorithms ; Brain - physiology ; Brain Mapping - methods ; High-resolution spatial filtering ; Humans ; Linearly Constrained Minimum Variance (LCMV) ; Magnetoencephalography ; Magnetoencephalography - methods ; Models, Neurological ; Multiple Signal Classification (MUSIC) ; Signal Processing, Computer-Assisted ; Spatial beamforming</subject><ispartof>Journal of neuroscience methods, 2012-04, Vol.205 (2), p.312-323</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ccb6cec610302d72222d4ec321161113db74fe1f6063d1a7fd3096115a7e64103</citedby><cites>FETCH-LOGICAL-c367t-ccb6cec610302d72222d4ec321161113db74fe1f6063d1a7fd3096115a7e64103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jneumeth.2012.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22330793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Hoyos, A.</creatorcontrib><creatorcontrib>Portillo, J.</creatorcontrib><creatorcontrib>Portillo, I.</creatorcontrib><creatorcontrib>Marín, P.</creatorcontrib><creatorcontrib>Maestú, F.</creatorcontrib><creatorcontrib>Poch-Broto, J.</creatorcontrib><creatorcontrib>Ortiz, T.</creatorcontrib><creatorcontrib>Hernando, Antonio</creatorcontrib><title>Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>► We present some improvements on SVD-based methods for source localization in MEG. ► We concentrate in practical implementations for use in MEG commercial equipment. ► These improvements are tested in a practical case of auditive stimulation. ► Some strategies are proposed that can be implemented in commercial equipments. ► We focus on real, clinical scenarios. The present work shows some improvements realized on practical aspects of the implementation of Singular Value Decomposition (SVD) methods to localize the sources of neural activity by means of magnetoencephalograph (MEG). Two methods have been improved and compared i.e. a spatial filter, the Linearly Constrained Minimum Variance Beamformer (LCMV) method, and a signal subspace method that is an implementation of the MUSIC (Multiple Signal Classification) method due to Mosher et al. (1992). It also shows the performance of both methods comparing three different averaging procedures. The influence of the correct selection of the noise subspace dimension has been analyzed. Using acoustic stimulus for real patient measurements, we discuss the relevant differences of both methods and propose an adequate strategy for future diagnosis based on correct source localization.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>High-resolution spatial filtering</subject><subject>Humans</subject><subject>Linearly Constrained Minimum Variance (LCMV)</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Models, Neurological</subject><subject>Multiple Signal Classification (MUSIC)</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spatial beamforming</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlqIzEQhkWYEDvLKwTd5tROSbIl-zZDM4vBJocs5CZkqZrIdEseqdswefrIcTzXKQrqUN9fy0_ILYMJAybvtpNtwKHD_nXCgfEJsJL8jIzZXPFKqvnLFzIu4KwCrmBELnPeAsB0AfKCjDgXAtRCjEmqY7czyecYqAmO-m6X4h47DH2msaGrev380Vg_PSxrmuOQLNI2WtP6N9P7IuvRvgb_Z8BMm5jokJH6QBOaltrWB19QimHvUwwfY6_JeWPajDef9Yo8_fzxWP-uVve_lvX3VWWFVH1l7UZatJKBAO4UL-GmaAVnTDLGhNuoaYOskSCFY0Y1TsCidGZGoZwW1RX5epxbPjpc1-vOZ4ttawLGIesFV3PBxWxWSHkkbYo5J2z0LvnOpL-agT7Yrbf6ZLc-2K2BleRFePu5Yth06P7JTv4W4NsRwPLo3mPS2XoMFp1PaHvtov_fjnfeSpVv</recordid><startdate>20120415</startdate><enddate>20120415</enddate><creator>de Hoyos, A.</creator><creator>Portillo, J.</creator><creator>Portillo, I.</creator><creator>Marín, P.</creator><creator>Maestú, F.</creator><creator>Poch-Broto, J.</creator><creator>Ortiz, T.</creator><creator>Hernando, Antonio</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120415</creationdate><title>Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments</title><author>de Hoyos, A. ; Portillo, J. ; Portillo, I. ; Marín, P. ; Maestú, F. ; Poch-Broto, J. ; Ortiz, T. ; Hernando, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ccb6cec610302d72222d4ec321161113db74fe1f6063d1a7fd3096115a7e64103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>High-resolution spatial filtering</topic><topic>Humans</topic><topic>Linearly Constrained Minimum Variance (LCMV)</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Models, Neurological</topic><topic>Multiple Signal Classification (MUSIC)</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spatial beamforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Hoyos, A.</creatorcontrib><creatorcontrib>Portillo, J.</creatorcontrib><creatorcontrib>Portillo, I.</creatorcontrib><creatorcontrib>Marín, P.</creatorcontrib><creatorcontrib>Maestú, F.</creatorcontrib><creatorcontrib>Poch-Broto, J.</creatorcontrib><creatorcontrib>Ortiz, T.</creatorcontrib><creatorcontrib>Hernando, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Hoyos, A.</au><au>Portillo, J.</au><au>Portillo, I.</au><au>Marín, P.</au><au>Maestú, F.</au><au>Poch-Broto, J.</au><au>Ortiz, T.</au><au>Hernando, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2012-04-15</date><risdate>2012</risdate><volume>205</volume><issue>2</issue><spage>312</spage><epage>323</epage><pages>312-323</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>► We present some improvements on SVD-based methods for source localization in MEG. ► We concentrate in practical implementations for use in MEG commercial equipment. ► These improvements are tested in a practical case of auditive stimulation. ► Some strategies are proposed that can be implemented in commercial equipments. ► We focus on real, clinical scenarios. The present work shows some improvements realized on practical aspects of the implementation of Singular Value Decomposition (SVD) methods to localize the sources of neural activity by means of magnetoencephalograph (MEG). Two methods have been improved and compared i.e. a spatial filter, the Linearly Constrained Minimum Variance Beamformer (LCMV) method, and a signal subspace method that is an implementation of the MUSIC (Multiple Signal Classification) method due to Mosher et al. (1992). It also shows the performance of both methods comparing three different averaging procedures. The influence of the correct selection of the noise subspace dimension has been analyzed. Using acoustic stimulus for real patient measurements, we discuss the relevant differences of both methods and propose an adequate strategy for future diagnosis based on correct source localization.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22330793</pmid><doi>10.1016/j.jneumeth.2012.01.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2012-04, Vol.205 (2), p.312-323
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_927832355
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Algorithms
Brain - physiology
Brain Mapping - methods
High-resolution spatial filtering
Humans
Linearly Constrained Minimum Variance (LCMV)
Magnetoencephalography
Magnetoencephalography - methods
Models, Neurological
Multiple Signal Classification (MUSIC)
Signal Processing, Computer-Assisted
Spatial beamforming
title Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20and%20improvements%20of%20LCMV%20and%20MUSIC%20source%20localization%20techniques%20for%20use%20in%20real%20clinical%20environments&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=de%20Hoyos,%20A.&rft.date=2012-04-15&rft.volume=205&rft.issue=2&rft.spage=312&rft.epage=323&rft.pages=312-323&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2012.01.012&rft_dat=%3Cproquest_cross%3E927832355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927832355&rft_id=info:pmid/22330793&rft_els_id=S0165027012000271&rfr_iscdi=true