Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity

Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene–vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2012-03, Vol.13 (3), p.805-813
Hauptverfasser: Bellusci, Mariangela, Francolini, Iolanda, Martinelli, Andrea, D’Ilario, Lucio, Piozzi, Antonella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 3
container_start_page 805
container_title Biomacromolecules
container_volume 13
creator Bellusci, Mariangela
Francolini, Iolanda
Martinelli, Andrea
D’Ilario, Lucio
Piozzi, Antonella
description Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene–vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty acids were employed (C8, C12, C18), obtaining EVAL functionalization degrees ranging from 5% to 65%. The enzyme–polymer affinity increased with both the length of the alkyl chain and the matrix hydrophobicity. In particular, the esterified polymers showed a tendency to give segregated hydrophilic and hydrophobic domains. It was observed the formation of an enzyme multilayer at both low and high protein concentrations. Desorption experiments showed that Candida rugosa lipase may be adsorbed in a closed form on the polymer hydrophilic domains and in an open, active structure on the hydrophobic ones. The best results were found for the EVAL-C18 13% matrix that showed hyperactivation with both the soluble and unsoluble substrate after enzyme desorption. In addition, this supported biocatalyst retained its activity for repetitive cycles.
doi_str_mv 10.1021/bm2017228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927830751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>927830751</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-d907e538b5594a1900f48ae06b8787d032e57a447905c0b362b51f471831b543</originalsourceid><addsrcrecordid>eNp90d1qFDEUB_Agiv3QC19AciPVi6n5nCTerbW1CwstWLwdMpkz3ZTMzJrMFKYP0uc1a9ftjQgHEsLvnAP5I_SOklNKGP1cd4xQxZh-gQ6pZGUhSsJe_rnLQimjDtBRSneEEMOFfI0OGGNG6lIfoseV39gEeNl1Q-2Df7CjH3qc65tvW4jQj2HGF1Pvtu82A2jwT9_Pofia-xq86DZrnyt4h6-HMHcQ0xe87NswQe8ADy2-Xm83_IDbCLf78eMa8Hn_kD2-nJuYO8c8YZHX3PtxfoNetTYkeLs7j9HNxfnN2WWxuvq-PFusCsuVGovGEAWS61pKIyw1hLRCWyBlrZVWDeEMpLJCKEOkIzUvWS1pKxTVnNZS8GN08jR2E4dfE6Sx6nxyEILtYZhSZZjSnChJs_z4X5m_WnCjtFSZfnqiLg4pRWirTfSdjXNFSbXNq9rnle373dip7qDZy78BZfBhB2xyNrTR9s6nZyc1l8rQZ2ddqu6GKeas0j8W_gaEfal7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524397857</pqid></control><display><type>article</type><title>Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bellusci, Mariangela ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Piozzi, Antonella</creator><creatorcontrib>Bellusci, Mariangela ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Piozzi, Antonella</creatorcontrib><description>Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene–vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty acids were employed (C8, C12, C18), obtaining EVAL functionalization degrees ranging from 5% to 65%. The enzyme–polymer affinity increased with both the length of the alkyl chain and the matrix hydrophobicity. In particular, the esterified polymers showed a tendency to give segregated hydrophilic and hydrophobic domains. It was observed the formation of an enzyme multilayer at both low and high protein concentrations. Desorption experiments showed that Candida rugosa lipase may be adsorbed in a closed form on the polymer hydrophilic domains and in an open, active structure on the hydrophobic ones. The best results were found for the EVAL-C18 13% matrix that showed hyperactivation with both the soluble and unsoluble substrate after enzyme desorption. In addition, this supported biocatalyst retained its activity for repetitive cycles.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm2017228</identifier><identifier>PMID: 22295868</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and medical sciences ; Biotechnology ; Candida - enzymology ; Candida rugosa ; Enzymes, Immobilized - chemistry ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Immobilization of enzymes and other molecules ; Immobilization techniques ; Kinetics ; Lipase - chemistry ; Lipase - metabolism ; Magnetic Resonance Spectroscopy ; Methods. Procedures. Technologies ; Organic polymers ; Physicochemistry of polymers ; Polymers - chemistry ; Polymers - metabolism ; Properties and characterization ; Special properties (catalyst, reagent or carrier) ; Temperature ; Vinyl Compounds - chemistry</subject><ispartof>Biomacromolecules, 2012-03, Vol.13 (3), p.805-813</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-d907e538b5594a1900f48ae06b8787d032e57a447905c0b362b51f471831b543</citedby><cites>FETCH-LOGICAL-a377t-d907e538b5594a1900f48ae06b8787d032e57a447905c0b362b51f471831b543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm2017228$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm2017228$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25835791$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22295868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellusci, Mariangela</creatorcontrib><creatorcontrib>Francolini, Iolanda</creatorcontrib><creatorcontrib>Martinelli, Andrea</creatorcontrib><creatorcontrib>D’Ilario, Lucio</creatorcontrib><creatorcontrib>Piozzi, Antonella</creatorcontrib><title>Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene–vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty acids were employed (C8, C12, C18), obtaining EVAL functionalization degrees ranging from 5% to 65%. The enzyme–polymer affinity increased with both the length of the alkyl chain and the matrix hydrophobicity. In particular, the esterified polymers showed a tendency to give segregated hydrophilic and hydrophobic domains. It was observed the formation of an enzyme multilayer at both low and high protein concentrations. Desorption experiments showed that Candida rugosa lipase may be adsorbed in a closed form on the polymer hydrophilic domains and in an open, active structure on the hydrophobic ones. The best results were found for the EVAL-C18 13% matrix that showed hyperactivation with both the soluble and unsoluble substrate after enzyme desorption. In addition, this supported biocatalyst retained its activity for repetitive cycles.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Candida - enzymology</subject><subject>Candida rugosa</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Immobilization of enzymes and other molecules</subject><subject>Immobilization techniques</subject><subject>Kinetics</subject><subject>Lipase - chemistry</subject><subject>Lipase - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Methods. Procedures. Technologies</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Properties and characterization</subject><subject>Special properties (catalyst, reagent or carrier)</subject><subject>Temperature</subject><subject>Vinyl Compounds - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90d1qFDEUB_Agiv3QC19AciPVi6n5nCTerbW1CwstWLwdMpkz3ZTMzJrMFKYP0uc1a9ftjQgHEsLvnAP5I_SOklNKGP1cd4xQxZh-gQ6pZGUhSsJe_rnLQimjDtBRSneEEMOFfI0OGGNG6lIfoseV39gEeNl1Q-2Df7CjH3qc65tvW4jQj2HGF1Pvtu82A2jwT9_Pofia-xq86DZrnyt4h6-HMHcQ0xe87NswQe8ADy2-Xm83_IDbCLf78eMa8Hn_kD2-nJuYO8c8YZHX3PtxfoNetTYkeLs7j9HNxfnN2WWxuvq-PFusCsuVGovGEAWS61pKIyw1hLRCWyBlrZVWDeEMpLJCKEOkIzUvWS1pKxTVnNZS8GN08jR2E4dfE6Sx6nxyEILtYZhSZZjSnChJs_z4X5m_WnCjtFSZfnqiLg4pRWirTfSdjXNFSbXNq9rnle373dip7qDZy78BZfBhB2xyNrTR9s6nZyc1l8rQZ2ddqu6GKeas0j8W_gaEfal7</recordid><startdate>20120312</startdate><enddate>20120312</enddate><creator>Bellusci, Mariangela</creator><creator>Francolini, Iolanda</creator><creator>Martinelli, Andrea</creator><creator>D’Ilario, Lucio</creator><creator>Piozzi, Antonella</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20120312</creationdate><title>Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity</title><author>Bellusci, Mariangela ; Francolini, Iolanda ; Martinelli, Andrea ; D’Ilario, Lucio ; Piozzi, Antonella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-d907e538b5594a1900f48ae06b8787d032e57a447905c0b362b51f471831b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Candida - enzymology</topic><topic>Candida rugosa</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Immobilization of enzymes and other molecules</topic><topic>Immobilization techniques</topic><topic>Kinetics</topic><topic>Lipase - chemistry</topic><topic>Lipase - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Methods. Procedures. Technologies</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Properties and characterization</topic><topic>Special properties (catalyst, reagent or carrier)</topic><topic>Temperature</topic><topic>Vinyl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellusci, Mariangela</creatorcontrib><creatorcontrib>Francolini, Iolanda</creatorcontrib><creatorcontrib>Martinelli, Andrea</creatorcontrib><creatorcontrib>D’Ilario, Lucio</creatorcontrib><creatorcontrib>Piozzi, Antonella</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellusci, Mariangela</au><au>Francolini, Iolanda</au><au>Martinelli, Andrea</au><au>D’Ilario, Lucio</au><au>Piozzi, Antonella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2012-03-12</date><risdate>2012</risdate><volume>13</volume><issue>3</issue><spage>805</spage><epage>813</epage><pages>805-813</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Microbial lipase from Candida rugosa was immobilized by physical adsorption onto an ethylene–vinyl alcohol polymer (EVAL) functionalized with acyl chlorides. To evaluate the influence of the reagent chain-length on the amount and activity of immobilized lipase, three differently long aliphatic fatty acids were employed (C8, C12, C18), obtaining EVAL functionalization degrees ranging from 5% to 65%. The enzyme–polymer affinity increased with both the length of the alkyl chain and the matrix hydrophobicity. In particular, the esterified polymers showed a tendency to give segregated hydrophilic and hydrophobic domains. It was observed the formation of an enzyme multilayer at both low and high protein concentrations. Desorption experiments showed that Candida rugosa lipase may be adsorbed in a closed form on the polymer hydrophilic domains and in an open, active structure on the hydrophobic ones. The best results were found for the EVAL-C18 13% matrix that showed hyperactivation with both the soluble and unsoluble substrate after enzyme desorption. In addition, this supported biocatalyst retained its activity for repetitive cycles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22295868</pmid><doi>10.1021/bm2017228</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2012-03, Vol.13 (3), p.805-813
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_927830751
source MEDLINE; ACS Publications
subjects Applied sciences
Biological and medical sciences
Biotechnology
Candida - enzymology
Candida rugosa
Enzymes, Immobilized - chemistry
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Hydrolysis
Hydrophobic and Hydrophilic Interactions
Immobilization of enzymes and other molecules
Immobilization techniques
Kinetics
Lipase - chemistry
Lipase - metabolism
Magnetic Resonance Spectroscopy
Methods. Procedures. Technologies
Organic polymers
Physicochemistry of polymers
Polymers - chemistry
Polymers - metabolism
Properties and characterization
Special properties (catalyst, reagent or carrier)
Temperature
Vinyl Compounds - chemistry
title Lipase Immobilization on Differently Functionalized Vinyl-Based Amphiphilic Polymers: Influence of Phase Segregation on the Enzyme Hydrolytic Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipase%20Immobilization%20on%20Differently%20Functionalized%20Vinyl-Based%20Amphiphilic%20Polymers:%20Influence%20of%20Phase%20Segregation%20on%20the%20Enzyme%20Hydrolytic%20Activity&rft.jtitle=Biomacromolecules&rft.au=Bellusci,%20Mariangela&rft.date=2012-03-12&rft.volume=13&rft.issue=3&rft.spage=805&rft.epage=813&rft.pages=805-813&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm2017228&rft_dat=%3Cproquest_cross%3E927830751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524397857&rft_id=info:pmid/22295868&rfr_iscdi=true