Design of Barbiturate–Nitrate Hybrids that Inhibit MMP-9 Activity and Secretion

We describe a new type of barbiturate-based matrix metalloproteinase (MMP) inhibitor incorporating a nitric oxide (NO) donor/mimetic group (series 1). The compounds were designed to inhibit MMP at enzyme level and to attenuate MMP-9 secretion arising from inflammatory signaling. To detect effects re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2012-03, Vol.55 (5), p.2154-2162
Hauptverfasser: Wang, Jun, O’Sullivan, Shane, Harmon, Shona, Keaveny, Ray, Radomski, Marek W, Medina, Carlos, Gilmer, John F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a new type of barbiturate-based matrix metalloproteinase (MMP) inhibitor incorporating a nitric oxide (NO) donor/mimetic group (series 1). The compounds were designed to inhibit MMP at enzyme level and to attenuate MMP-9 secretion arising from inflammatory signaling. To detect effects related to the nitrate, we prepared and studied an analogous series of barbiturate C5-alkyl alcohols that were unable to release NO (series 2). Both series inhibited recombinant human MMP-2/9 activity with nanomolar potency. Series 1 consistently inhibited the secretion of MMP-9 from TNFα/IL1β stimulated Caco-2 cells at 10 μM, which could be attributed to NO related effects because the non-nitrate panel did not affect enzyme levels. Several compounds from series 1 (10 μM) inhibited tumor cell invasion but none from the non-nitrate panel did. The work shows that MMP-inhibitory barbiturates are suitable scaffolds for hybrid design, targeting additional facets of MMP pathophysiology, with potential to improve risk-benefit ratios.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm201352k