Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments
We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scatterin...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-02, Vol.108 (5), p.057402-057402, Article 057402 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 057402 |
---|---|
container_issue | 5 |
container_start_page | 057402 |
container_title | Physical review letters |
container_volume | 108 |
creator | Lermer, M Gregersen, N Dunzer, F Reitzenstein, S Höfling, S Mørk, J Worschech, L Kamp, M Forchel, A |
description | We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm. |
doi_str_mv | 10.1103/PhysRevLett.108.057402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927688896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>927688896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-f080c07fc4314db0f958cf041844b9f5cb76366dd5cb0e8981a541296ff327d93</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EoqXwC1V2rFLGiePYS6h4SZVACNaR44zboLwaO4X8PUYtFasZje6duXMImVNYUArxzetmtG-4W6FzCwpiAUnKIDohUwqpDFNK2SmZAsQ0lADphFxY-wkANOLinEyiiAFITqdE3VWt3oRfaocBNuuyQezLZh20JtgOqnFDHRStC-pS921XVpXqbWDaPtBqV7rxqMEKtevbYmyUl9oAvzu_p8bG2UtyZlRl8epQZ-Tj4f59-RSuXh6fl7erUMcUXGhAgIbUaBZTVuRgZCK0AUYFY7k0ic5THnNeFL4DFFJQlTAaSW5MHKWFjGfker-369vtgNZldWk1-sgNtoPNZJRyIYTkXsn3Sv-TtT2arPNZVT9mFLJfutk_un4msj1db5wfTgx5jcXR9ocz_gERHHsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927688896</pqid></control><display><type>article</type><title>Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments</title><source>American Physical Society Journals</source><creator>Lermer, M ; Gregersen, N ; Dunzer, F ; Reitzenstein, S ; Höfling, S ; Mørk, J ; Worschech, L ; Kamp, M ; Forchel, A</creator><creatorcontrib>Lermer, M ; Gregersen, N ; Dunzer, F ; Reitzenstein, S ; Höfling, S ; Mørk, J ; Worschech, L ; Kamp, M ; Forchel, A</creatorcontrib><description>We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.108.057402</identifier><identifier>PMID: 22400961</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-02, Vol.108 (5), p.057402-057402, Article 057402</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-f080c07fc4314db0f958cf041844b9f5cb76366dd5cb0e8981a541296ff327d93</citedby><cites>FETCH-LOGICAL-c310t-f080c07fc4314db0f958cf041844b9f5cb76366dd5cb0e8981a541296ff327d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22400961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lermer, M</creatorcontrib><creatorcontrib>Gregersen, N</creatorcontrib><creatorcontrib>Dunzer, F</creatorcontrib><creatorcontrib>Reitzenstein, S</creatorcontrib><creatorcontrib>Höfling, S</creatorcontrib><creatorcontrib>Mørk, J</creatorcontrib><creatorcontrib>Worschech, L</creatorcontrib><creatorcontrib>Kamp, M</creatorcontrib><creatorcontrib>Forchel, A</creatorcontrib><title>Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EoqXwC1V2rFLGiePYS6h4SZVACNaR44zboLwaO4X8PUYtFasZje6duXMImVNYUArxzetmtG-4W6FzCwpiAUnKIDohUwqpDFNK2SmZAsQ0lADphFxY-wkANOLinEyiiAFITqdE3VWt3oRfaocBNuuyQezLZh20JtgOqnFDHRStC-pS921XVpXqbWDaPtBqV7rxqMEKtevbYmyUl9oAvzu_p8bG2UtyZlRl8epQZ-Tj4f59-RSuXh6fl7erUMcUXGhAgIbUaBZTVuRgZCK0AUYFY7k0ic5THnNeFL4DFFJQlTAaSW5MHKWFjGfker-369vtgNZldWk1-sgNtoPNZJRyIYTkXsn3Sv-TtT2arPNZVT9mFLJfutk_un4msj1db5wfTgx5jcXR9ocz_gERHHsg</recordid><startdate>20120203</startdate><enddate>20120203</enddate><creator>Lermer, M</creator><creator>Gregersen, N</creator><creator>Dunzer, F</creator><creator>Reitzenstein, S</creator><creator>Höfling, S</creator><creator>Mørk, J</creator><creator>Worschech, L</creator><creator>Kamp, M</creator><creator>Forchel, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120203</creationdate><title>Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments</title><author>Lermer, M ; Gregersen, N ; Dunzer, F ; Reitzenstein, S ; Höfling, S ; Mørk, J ; Worschech, L ; Kamp, M ; Forchel, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-f080c07fc4314db0f958cf041844b9f5cb76366dd5cb0e8981a541296ff327d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lermer, M</creatorcontrib><creatorcontrib>Gregersen, N</creatorcontrib><creatorcontrib>Dunzer, F</creatorcontrib><creatorcontrib>Reitzenstein, S</creatorcontrib><creatorcontrib>Höfling, S</creatorcontrib><creatorcontrib>Mørk, J</creatorcontrib><creatorcontrib>Worschech, L</creatorcontrib><creatorcontrib>Kamp, M</creatorcontrib><creatorcontrib>Forchel, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lermer, M</au><au>Gregersen, N</au><au>Dunzer, F</au><au>Reitzenstein, S</au><au>Höfling, S</au><au>Mørk, J</au><au>Worschech, L</au><au>Kamp, M</au><au>Forchel, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-02-03</date><risdate>2012</risdate><volume>108</volume><issue>5</issue><spage>057402</spage><epage>057402</epage><pages>057402-057402</pages><artnum>057402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.</abstract><cop>United States</cop><pmid>22400961</pmid><doi>10.1103/PhysRevLett.108.057402</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-02, Vol.108 (5), p.057402-057402, Article 057402 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_927688896 |
source | American Physical Society Journals |
title | Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bloch-wave%20engineering%20of%20quantum%20dot%20micropillars%20for%20cavity%20quantum%20electrodynamics%20experiments&rft.jtitle=Physical%20review%20letters&rft.au=Lermer,%20M&rft.date=2012-02-03&rft.volume=108&rft.issue=5&rft.spage=057402&rft.epage=057402&rft.pages=057402-057402&rft.artnum=057402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.108.057402&rft_dat=%3Cproquest_cross%3E927688896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927688896&rft_id=info:pmid/22400961&rfr_iscdi=true |