PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies
The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates sp...
Gespeichert in:
Veröffentlicht in: | Current oncology reports 2012-04, Vol.14 (2), p.129-138 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | Current oncology reports |
container_volume | 14 |
creator | Willems, Lise Tamburini, Jerome Chapuis, Nicolas Lacombe, Catherine Mayeux, Patrick Bouscary, Didier |
description | The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs. |
doi_str_mv | 10.1007/s11912-012-0227-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927687909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>927687909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAWyQd6wCYzsvs0PlVahoBWVtOc6kTZVHsRNV-XtStbBkMZqR5syV5hByyeCGAUS3jjHJuAe74jzyuiMyZIHwvZCH8ng3c-GJSMKAnDm3BuAAMZySAeciACFgSF7nE_FGdZXScjH7oJ_5stJFXi3pXDerre4czSs61pVBe0ffcUsfdKNpXdGFtktsMKWLFVq9ydGdk5NMFw4vDn1Evp4eF-MXbzp7nozvp57xQTZeksV-FpggzqRmhhk_ChNIowhjGaRMpJBgCMbvGcgyLrQJojgxGaZofNRSixG53udubP3domtUmTuDRaErrFunJI_CuH9a9iTbk8bWzlnM1MbmpbadYqB2BtXeoIJd9QZV199cHdLbpMT07-JXWQ_wPeD6VbVEq9Z1a3tr7p_UH3kHe0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927687909</pqid></control><display><type>article</type><title>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Willems, Lise ; Tamburini, Jerome ; Chapuis, Nicolas ; Lacombe, Catherine ; Mayeux, Patrick ; Bouscary, Didier</creator><creatorcontrib>Willems, Lise ; Tamburini, Jerome ; Chapuis, Nicolas ; Lacombe, Catherine ; Mayeux, Patrick ; Bouscary, Didier</creatorcontrib><description>The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.</description><identifier>ISSN: 1523-3790</identifier><identifier>EISSN: 1534-6269</identifier><identifier>DOI: 10.1007/s11912-012-0227-y</identifier><identifier>PMID: 22350330</identifier><language>eng</language><publisher>New York: Current Science Inc</publisher><subject>Clinical Trials as Topic ; Drug Evaluation, Preclinical ; Evolving Therapies (RM Bukowski ; Humans ; Mechanistic Target of Rapamycin Complex 1 ; Medicine ; Medicine & Public Health ; Molecular Targeted Therapy - methods ; Multiprotein Complexes ; Neoplasms - drug therapy ; Neoplasms - physiopathology ; Oncology ; Phosphatidylinositol 3-Kinases - antagonists & inhibitors ; Phosphatidylinositol 3-Kinases - physiology ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Proteins - antagonists & inhibitors ; Proteins - physiology ; Section Editor ; Signal Transduction - drug effects ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; TOR Serine-Threonine Kinases - physiology ; Transcription Factors - antagonists & inhibitors ; Transcription Factors - physiology</subject><ispartof>Current oncology reports, 2012-04, Vol.14 (2), p.129-138</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</citedby><cites>FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11912-012-0227-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11912-012-0227-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22350330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willems, Lise</creatorcontrib><creatorcontrib>Tamburini, Jerome</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Bouscary, Didier</creatorcontrib><title>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</title><title>Current oncology reports</title><addtitle>Curr Oncol Rep</addtitle><addtitle>Curr Oncol Rep</addtitle><description>The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.</description><subject>Clinical Trials as Topic</subject><subject>Drug Evaluation, Preclinical</subject><subject>Evolving Therapies (RM Bukowski</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Multiprotein Complexes</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - physiopathology</subject><subject>Oncology</subject><subject>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Proteins - antagonists & inhibitors</subject><subject>Proteins - physiology</subject><subject>Section Editor</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>TOR Serine-Threonine Kinases - physiology</subject><subject>Transcription Factors - antagonists & inhibitors</subject><subject>Transcription Factors - physiology</subject><issn>1523-3790</issn><issn>1534-6269</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAWyQd6wCYzsvs0PlVahoBWVtOc6kTZVHsRNV-XtStbBkMZqR5syV5hByyeCGAUS3jjHJuAe74jzyuiMyZIHwvZCH8ng3c-GJSMKAnDm3BuAAMZySAeciACFgSF7nE_FGdZXScjH7oJ_5stJFXi3pXDerre4czSs61pVBe0ffcUsfdKNpXdGFtktsMKWLFVq9ydGdk5NMFw4vDn1Evp4eF-MXbzp7nozvp57xQTZeksV-FpggzqRmhhk_ChNIowhjGaRMpJBgCMbvGcgyLrQJojgxGaZofNRSixG53udubP3domtUmTuDRaErrFunJI_CuH9a9iTbk8bWzlnM1MbmpbadYqB2BtXeoIJd9QZV199cHdLbpMT07-JXWQ_wPeD6VbVEq9Z1a3tr7p_UH3kHe0w</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Willems, Lise</creator><creator>Tamburini, Jerome</creator><creator>Chapuis, Nicolas</creator><creator>Lacombe, Catherine</creator><creator>Mayeux, Patrick</creator><creator>Bouscary, Didier</creator><general>Current Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</title><author>Willems, Lise ; Tamburini, Jerome ; Chapuis, Nicolas ; Lacombe, Catherine ; Mayeux, Patrick ; Bouscary, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clinical Trials as Topic</topic><topic>Drug Evaluation, Preclinical</topic><topic>Evolving Therapies (RM Bukowski</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Multiprotein Complexes</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - physiopathology</topic><topic>Oncology</topic><topic>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Proteins - antagonists & inhibitors</topic><topic>Proteins - physiology</topic><topic>Section Editor</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>TOR Serine-Threonine Kinases - physiology</topic><topic>Transcription Factors - antagonists & inhibitors</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willems, Lise</creatorcontrib><creatorcontrib>Tamburini, Jerome</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Bouscary, Didier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current oncology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willems, Lise</au><au>Tamburini, Jerome</au><au>Chapuis, Nicolas</au><au>Lacombe, Catherine</au><au>Mayeux, Patrick</au><au>Bouscary, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</atitle><jtitle>Current oncology reports</jtitle><stitle>Curr Oncol Rep</stitle><addtitle>Curr Oncol Rep</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>14</volume><issue>2</issue><spage>129</spage><epage>138</epage><pages>129-138</pages><issn>1523-3790</issn><eissn>1534-6269</eissn><abstract>The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.</abstract><cop>New York</cop><pub>Current Science Inc</pub><pmid>22350330</pmid><doi>10.1007/s11912-012-0227-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-3790 |
ispartof | Current oncology reports, 2012-04, Vol.14 (2), p.129-138 |
issn | 1523-3790 1534-6269 |
language | eng |
recordid | cdi_proquest_miscellaneous_927687909 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Clinical Trials as Topic Drug Evaluation, Preclinical Evolving Therapies (RM Bukowski Humans Mechanistic Target of Rapamycin Complex 1 Medicine Medicine & Public Health Molecular Targeted Therapy - methods Multiprotein Complexes Neoplasms - drug therapy Neoplasms - physiopathology Oncology Phosphatidylinositol 3-Kinases - antagonists & inhibitors Phosphatidylinositol 3-Kinases - physiology Protein Kinase Inhibitors - pharmacology Protein Kinase Inhibitors - therapeutic use Proteins - antagonists & inhibitors Proteins - physiology Section Editor Signal Transduction - drug effects Signal Transduction - physiology TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - physiology Transcription Factors - antagonists & inhibitors Transcription Factors - physiology |
title | PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%20and%20mTOR%20Signaling%20Pathways%20in%20Cancer:%20New%20Data%20on%20Targeted%20Therapies&rft.jtitle=Current%20oncology%20reports&rft.au=Willems,%20Lise&rft.date=2012-04-01&rft.volume=14&rft.issue=2&rft.spage=129&rft.epage=138&rft.pages=129-138&rft.issn=1523-3790&rft.eissn=1534-6269&rft_id=info:doi/10.1007/s11912-012-0227-y&rft_dat=%3Cproquest_cross%3E927687909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927687909&rft_id=info:pmid/22350330&rfr_iscdi=true |