PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies

The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current oncology reports 2012-04, Vol.14 (2), p.129-138
Hauptverfasser: Willems, Lise, Tamburini, Jerome, Chapuis, Nicolas, Lacombe, Catherine, Mayeux, Patrick, Bouscary, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 2
container_start_page 129
container_title Current oncology reports
container_volume 14
creator Willems, Lise
Tamburini, Jerome
Chapuis, Nicolas
Lacombe, Catherine
Mayeux, Patrick
Bouscary, Didier
description The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.
doi_str_mv 10.1007/s11912-012-0227-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927687909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>927687909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAWyQd6wCYzsvs0PlVahoBWVtOc6kTZVHsRNV-XtStbBkMZqR5syV5hByyeCGAUS3jjHJuAe74jzyuiMyZIHwvZCH8ng3c-GJSMKAnDm3BuAAMZySAeciACFgSF7nE_FGdZXScjH7oJ_5stJFXi3pXDerre4czSs61pVBe0ffcUsfdKNpXdGFtktsMKWLFVq9ydGdk5NMFw4vDn1Evp4eF-MXbzp7nozvp57xQTZeksV-FpggzqRmhhk_ChNIowhjGaRMpJBgCMbvGcgyLrQJojgxGaZofNRSixG53udubP3domtUmTuDRaErrFunJI_CuH9a9iTbk8bWzlnM1MbmpbadYqB2BtXeoIJd9QZV199cHdLbpMT07-JXWQ_wPeD6VbVEq9Z1a3tr7p_UH3kHe0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927687909</pqid></control><display><type>article</type><title>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Willems, Lise ; Tamburini, Jerome ; Chapuis, Nicolas ; Lacombe, Catherine ; Mayeux, Patrick ; Bouscary, Didier</creator><creatorcontrib>Willems, Lise ; Tamburini, Jerome ; Chapuis, Nicolas ; Lacombe, Catherine ; Mayeux, Patrick ; Bouscary, Didier</creatorcontrib><description>The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.</description><identifier>ISSN: 1523-3790</identifier><identifier>EISSN: 1534-6269</identifier><identifier>DOI: 10.1007/s11912-012-0227-y</identifier><identifier>PMID: 22350330</identifier><language>eng</language><publisher>New York: Current Science Inc</publisher><subject>Clinical Trials as Topic ; Drug Evaluation, Preclinical ; Evolving Therapies (RM Bukowski ; Humans ; Mechanistic Target of Rapamycin Complex 1 ; Medicine ; Medicine &amp; Public Health ; Molecular Targeted Therapy - methods ; Multiprotein Complexes ; Neoplasms - drug therapy ; Neoplasms - physiopathology ; Oncology ; Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors ; Phosphatidylinositol 3-Kinases - physiology ; Protein Kinase Inhibitors - pharmacology ; Protein Kinase Inhibitors - therapeutic use ; Proteins - antagonists &amp; inhibitors ; Proteins - physiology ; Section Editor ; Signal Transduction - drug effects ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - physiology ; Transcription Factors - antagonists &amp; inhibitors ; Transcription Factors - physiology</subject><ispartof>Current oncology reports, 2012-04, Vol.14 (2), p.129-138</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</citedby><cites>FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11912-012-0227-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11912-012-0227-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22350330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willems, Lise</creatorcontrib><creatorcontrib>Tamburini, Jerome</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Bouscary, Didier</creatorcontrib><title>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</title><title>Current oncology reports</title><addtitle>Curr Oncol Rep</addtitle><addtitle>Curr Oncol Rep</addtitle><description>The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.</description><subject>Clinical Trials as Topic</subject><subject>Drug Evaluation, Preclinical</subject><subject>Evolving Therapies (RM Bukowski</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Molecular Targeted Therapy - methods</subject><subject>Multiprotein Complexes</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - physiopathology</subject><subject>Oncology</subject><subject>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - therapeutic use</subject><subject>Proteins - antagonists &amp; inhibitors</subject><subject>Proteins - physiology</subject><subject>Section Editor</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - physiology</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Transcription Factors - physiology</subject><issn>1523-3790</issn><issn>1534-6269</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAWyQd6wCYzsvs0PlVahoBWVtOc6kTZVHsRNV-XtStbBkMZqR5syV5hByyeCGAUS3jjHJuAe74jzyuiMyZIHwvZCH8ng3c-GJSMKAnDm3BuAAMZySAeciACFgSF7nE_FGdZXScjH7oJ_5stJFXi3pXDerre4czSs61pVBe0ffcUsfdKNpXdGFtktsMKWLFVq9ydGdk5NMFw4vDn1Evp4eF-MXbzp7nozvp57xQTZeksV-FpggzqRmhhk_ChNIowhjGaRMpJBgCMbvGcgyLrQJojgxGaZofNRSixG53udubP3domtUmTuDRaErrFunJI_CuH9a9iTbk8bWzlnM1MbmpbadYqB2BtXeoIJd9QZV199cHdLbpMT07-JXWQ_wPeD6VbVEq9Z1a3tr7p_UH3kHe0w</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Willems, Lise</creator><creator>Tamburini, Jerome</creator><creator>Chapuis, Nicolas</creator><creator>Lacombe, Catherine</creator><creator>Mayeux, Patrick</creator><creator>Bouscary, Didier</creator><general>Current Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</title><author>Willems, Lise ; Tamburini, Jerome ; Chapuis, Nicolas ; Lacombe, Catherine ; Mayeux, Patrick ; Bouscary, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-bf84f5c58f9a1c1c476b0d77e895d13d0be60c44f50ff23ac578bcfedec4ea9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clinical Trials as Topic</topic><topic>Drug Evaluation, Preclinical</topic><topic>Evolving Therapies (RM Bukowski</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Molecular Targeted Therapy - methods</topic><topic>Multiprotein Complexes</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - physiopathology</topic><topic>Oncology</topic><topic>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - therapeutic use</topic><topic>Proteins - antagonists &amp; inhibitors</topic><topic>Proteins - physiology</topic><topic>Section Editor</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - physiology</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willems, Lise</creatorcontrib><creatorcontrib>Tamburini, Jerome</creatorcontrib><creatorcontrib>Chapuis, Nicolas</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Bouscary, Didier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current oncology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willems, Lise</au><au>Tamburini, Jerome</au><au>Chapuis, Nicolas</au><au>Lacombe, Catherine</au><au>Mayeux, Patrick</au><au>Bouscary, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies</atitle><jtitle>Current oncology reports</jtitle><stitle>Curr Oncol Rep</stitle><addtitle>Curr Oncol Rep</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>14</volume><issue>2</issue><spage>129</spage><epage>138</epage><pages>129-138</pages><issn>1523-3790</issn><eissn>1534-6269</eissn><abstract>The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.</abstract><cop>New York</cop><pub>Current Science Inc</pub><pmid>22350330</pmid><doi>10.1007/s11912-012-0227-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1523-3790
ispartof Current oncology reports, 2012-04, Vol.14 (2), p.129-138
issn 1523-3790
1534-6269
language eng
recordid cdi_proquest_miscellaneous_927687909
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Clinical Trials as Topic
Drug Evaluation, Preclinical
Evolving Therapies (RM Bukowski
Humans
Mechanistic Target of Rapamycin Complex 1
Medicine
Medicine & Public Health
Molecular Targeted Therapy - methods
Multiprotein Complexes
Neoplasms - drug therapy
Neoplasms - physiopathology
Oncology
Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Phosphatidylinositol 3-Kinases - physiology
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Proteins - antagonists & inhibitors
Proteins - physiology
Section Editor
Signal Transduction - drug effects
Signal Transduction - physiology
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - physiology
Transcription Factors - antagonists & inhibitors
Transcription Factors - physiology
title PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%20and%20mTOR%20Signaling%20Pathways%20in%20Cancer:%20New%20Data%20on%20Targeted%20Therapies&rft.jtitle=Current%20oncology%20reports&rft.au=Willems,%20Lise&rft.date=2012-04-01&rft.volume=14&rft.issue=2&rft.spage=129&rft.epage=138&rft.pages=129-138&rft.issn=1523-3790&rft.eissn=1534-6269&rft_id=info:doi/10.1007/s11912-012-0227-y&rft_dat=%3Cproquest_cross%3E927687909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927687909&rft_id=info:pmid/22350330&rfr_iscdi=true