Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data
Data from a Doppler SOund Detection And Ranging (SODAR) device, twice–daily radiosondes, 33 surface meteorological and four aerosol sites were used to assess the ability of the Weather Research and Forecasting model inline coupled with a chemistry package (WRF/Chem) to capture atmospheric boundary l...
Gespeichert in:
Veröffentlicht in: | Atmospheric pollution research 2011-07, Vol.2 (3), p.283-299 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 3 |
container_start_page | 283 |
container_title | Atmospheric pollution research |
container_volume | 2 |
creator | Mölders, Nicole Tran, Huy N.Q. Quinn, Patricia Sassen, Kenneth Shaw, Glenn E. Kramm, Gerhard |
description | Data from a Doppler SOund Detection And Ranging (SODAR) device, twice–daily radiosondes, 33 surface meteorological and four aerosol sites were used to assess the ability of the Weather Research and Forecasting model inline coupled with a chemistry package (WRF/Chem) to capture atmospheric boundary layer (ABL) characteristics in Interior Alaska during low solar irradiation (11–01–2005 to 02–28–2006). Biases determined based on all available data from the 33 sites over the entire episode are 1.6 K, 1.8 K, 1.85 m/s, –5 o, and 1.2 hPa for temperature, dewpoint temperature, wind–speed, wind–direction, and sea–level pressure, respectively. The SODAR–data reveal that WRF/Chem over/under–estimates wind–speed in the lower (upper) atmospheric boundary layer. WRF/Chem captures the frequency of low–level jets well, but overestimates the strength of moderate low–level jets. Data from the four aerosol sites suggest large underestimation of PM10, and NO3 at the remote sites and PM2.5 at the polluted site. Difficulty in capturing the temporal evolution of aerosol concentrations coincides with difficulty in capturing sudden temperature changes, underestimation of inversion–strengths and timing of frontal passages. Errors in PM2.5 concentrations strongly relate to temperature errors. |
doi_str_mv | 10.5094/APR.2011.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926900212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1309104215304852</els_id><sourcerecordid>926900212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d79f6e6b22a5620debc059b694c0ce167ab58e45ded12b68f9237c78fdfacc2e3</originalsourceid><addsrcrecordid>eNptkEtOAzEMhkcIJCpgxwGyY9OWJPNqlqPylCoVFRDLKJN4IGhmUuIMiB13QFyQk5CqLFjgjW35t3_rS5JjRqc5FdlpdbOacsrYlKb5TjJiKRUTRjO--6feT44Qn2mMVOQlp6Pkq0IExA76QFxDHlYXp_Mn6EhwBG03tCoAwaH-_visvA5Wk9oNvVH-nbTqHTzRT8orHcBbjFMkZvC2fySteyPoWuWJ9V4Zq4J1PRlwM9v0Dl1vYExul2fVakxUb6KLb5QGYlRQh8leo1qEo998kNxfnN_NryaL5eX1vFpMdMZmYWJK0RRQ1JyrvODUQK1pLupCZJpqYEWp6nwGWW7AMF4Xs0bwtNTlrDHRSXNID5KT7d21dy8DYJCdRQ1tq3pwA0rBC0EpZzwqx1ul9g7RQyPX3naRg2RUbvjLyF9u-MvIP8qLrRzi968WvERtoddgrAcdpHH2_8UfURiN-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926900212</pqid></control><display><type>article</type><title>Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mölders, Nicole ; Tran, Huy N.Q. ; Quinn, Patricia ; Sassen, Kenneth ; Shaw, Glenn E. ; Kramm, Gerhard</creator><creatorcontrib>Mölders, Nicole ; Tran, Huy N.Q. ; Quinn, Patricia ; Sassen, Kenneth ; Shaw, Glenn E. ; Kramm, Gerhard</creatorcontrib><description>Data from a Doppler SOund Detection And Ranging (SODAR) device, twice–daily radiosondes, 33 surface meteorological and four aerosol sites were used to assess the ability of the Weather Research and Forecasting model inline coupled with a chemistry package (WRF/Chem) to capture atmospheric boundary layer (ABL) characteristics in Interior Alaska during low solar irradiation (11–01–2005 to 02–28–2006). Biases determined based on all available data from the 33 sites over the entire episode are 1.6 K, 1.8 K, 1.85 m/s, –5 o, and 1.2 hPa for temperature, dewpoint temperature, wind–speed, wind–direction, and sea–level pressure, respectively. The SODAR–data reveal that WRF/Chem over/under–estimates wind–speed in the lower (upper) atmospheric boundary layer. WRF/Chem captures the frequency of low–level jets well, but overestimates the strength of moderate low–level jets. Data from the four aerosol sites suggest large underestimation of PM10, and NO3 at the remote sites and PM2.5 at the polluted site. Difficulty in capturing the temporal evolution of aerosol concentrations coincides with difficulty in capturing sudden temperature changes, underestimation of inversion–strengths and timing of frontal passages. Errors in PM2.5 concentrations strongly relate to temperature errors.</description><identifier>ISSN: 1309-1042</identifier><identifier>EISSN: 1309-1042</identifier><identifier>DOI: 10.5094/APR.2011.035</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aerosol ; Aerosol concentration ; Aerosols ; Air pollution ; Atmospheric boundary layer ; Atmospheric pollution ; Atmospheric pollution models ; Atmospheric pollution research ; Boundary layers ; High–latitudes ; Irradiation ; Low-level jet stream ; Particle size ; Particulate atmospheric pollution ; radiosondes ; Sea level ; SODAR ; Solar irradiation ; Stable boundary layer ; Temperature ; Temperature changes ; Weather ; WRF/Chem</subject><ispartof>Atmospheric pollution research, 2011-07, Vol.2 (3), p.283-299</ispartof><rights>2011 Turkish National Committee for Air Pollution Research and Control (TUNCAP)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d79f6e6b22a5620debc059b694c0ce167ab58e45ded12b68f9237c78fdfacc2e3</citedby><cites>FETCH-LOGICAL-c418t-d79f6e6b22a5620debc059b694c0ce167ab58e45ded12b68f9237c78fdfacc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mölders, Nicole</creatorcontrib><creatorcontrib>Tran, Huy N.Q.</creatorcontrib><creatorcontrib>Quinn, Patricia</creatorcontrib><creatorcontrib>Sassen, Kenneth</creatorcontrib><creatorcontrib>Shaw, Glenn E.</creatorcontrib><creatorcontrib>Kramm, Gerhard</creatorcontrib><title>Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data</title><title>Atmospheric pollution research</title><description>Data from a Doppler SOund Detection And Ranging (SODAR) device, twice–daily radiosondes, 33 surface meteorological and four aerosol sites were used to assess the ability of the Weather Research and Forecasting model inline coupled with a chemistry package (WRF/Chem) to capture atmospheric boundary layer (ABL) characteristics in Interior Alaska during low solar irradiation (11–01–2005 to 02–28–2006). Biases determined based on all available data from the 33 sites over the entire episode are 1.6 K, 1.8 K, 1.85 m/s, –5 o, and 1.2 hPa for temperature, dewpoint temperature, wind–speed, wind–direction, and sea–level pressure, respectively. The SODAR–data reveal that WRF/Chem over/under–estimates wind–speed in the lower (upper) atmospheric boundary layer. WRF/Chem captures the frequency of low–level jets well, but overestimates the strength of moderate low–level jets. Data from the four aerosol sites suggest large underestimation of PM10, and NO3 at the remote sites and PM2.5 at the polluted site. Difficulty in capturing the temporal evolution of aerosol concentrations coincides with difficulty in capturing sudden temperature changes, underestimation of inversion–strengths and timing of frontal passages. Errors in PM2.5 concentrations strongly relate to temperature errors.</description><subject>Aerosol</subject><subject>Aerosol concentration</subject><subject>Aerosols</subject><subject>Air pollution</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric pollution</subject><subject>Atmospheric pollution models</subject><subject>Atmospheric pollution research</subject><subject>Boundary layers</subject><subject>High–latitudes</subject><subject>Irradiation</subject><subject>Low-level jet stream</subject><subject>Particle size</subject><subject>Particulate atmospheric pollution</subject><subject>radiosondes</subject><subject>Sea level</subject><subject>SODAR</subject><subject>Solar irradiation</subject><subject>Stable boundary layer</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Weather</subject><subject>WRF/Chem</subject><issn>1309-1042</issn><issn>1309-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkEtOAzEMhkcIJCpgxwGyY9OWJPNqlqPylCoVFRDLKJN4IGhmUuIMiB13QFyQk5CqLFjgjW35t3_rS5JjRqc5FdlpdbOacsrYlKb5TjJiKRUTRjO--6feT44Qn2mMVOQlp6Pkq0IExA76QFxDHlYXp_Mn6EhwBG03tCoAwaH-_visvA5Wk9oNvVH-nbTqHTzRT8orHcBbjFMkZvC2fySteyPoWuWJ9V4Zq4J1PRlwM9v0Dl1vYExul2fVakxUb6KLb5QGYlRQh8leo1qEo998kNxfnN_NryaL5eX1vFpMdMZmYWJK0RRQ1JyrvODUQK1pLupCZJpqYEWp6nwGWW7AMF4Xs0bwtNTlrDHRSXNID5KT7d21dy8DYJCdRQ1tq3pwA0rBC0EpZzwqx1ul9g7RQyPX3naRg2RUbvjLyF9u-MvIP8qLrRzi968WvERtoddgrAcdpHH2_8UfURiN-Q</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Mölders, Nicole</creator><creator>Tran, Huy N.Q.</creator><creator>Quinn, Patricia</creator><creator>Sassen, Kenneth</creator><creator>Shaw, Glenn E.</creator><creator>Kramm, Gerhard</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20110701</creationdate><title>Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data</title><author>Mölders, Nicole ; Tran, Huy N.Q. ; Quinn, Patricia ; Sassen, Kenneth ; Shaw, Glenn E. ; Kramm, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d79f6e6b22a5620debc059b694c0ce167ab58e45ded12b68f9237c78fdfacc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosol</topic><topic>Aerosol concentration</topic><topic>Aerosols</topic><topic>Air pollution</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric pollution</topic><topic>Atmospheric pollution models</topic><topic>Atmospheric pollution research</topic><topic>Boundary layers</topic><topic>High–latitudes</topic><topic>Irradiation</topic><topic>Low-level jet stream</topic><topic>Particle size</topic><topic>Particulate atmospheric pollution</topic><topic>radiosondes</topic><topic>Sea level</topic><topic>SODAR</topic><topic>Solar irradiation</topic><topic>Stable boundary layer</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Weather</topic><topic>WRF/Chem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mölders, Nicole</creatorcontrib><creatorcontrib>Tran, Huy N.Q.</creatorcontrib><creatorcontrib>Quinn, Patricia</creatorcontrib><creatorcontrib>Sassen, Kenneth</creatorcontrib><creatorcontrib>Shaw, Glenn E.</creatorcontrib><creatorcontrib>Kramm, Gerhard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Atmospheric pollution research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mölders, Nicole</au><au>Tran, Huy N.Q.</au><au>Quinn, Patricia</au><au>Sassen, Kenneth</au><au>Shaw, Glenn E.</au><au>Kramm, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data</atitle><jtitle>Atmospheric pollution research</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>2</volume><issue>3</issue><spage>283</spage><epage>299</epage><pages>283-299</pages><issn>1309-1042</issn><eissn>1309-1042</eissn><abstract>Data from a Doppler SOund Detection And Ranging (SODAR) device, twice–daily radiosondes, 33 surface meteorological and four aerosol sites were used to assess the ability of the Weather Research and Forecasting model inline coupled with a chemistry package (WRF/Chem) to capture atmospheric boundary layer (ABL) characteristics in Interior Alaska during low solar irradiation (11–01–2005 to 02–28–2006). Biases determined based on all available data from the 33 sites over the entire episode are 1.6 K, 1.8 K, 1.85 m/s, –5 o, and 1.2 hPa for temperature, dewpoint temperature, wind–speed, wind–direction, and sea–level pressure, respectively. The SODAR–data reveal that WRF/Chem over/under–estimates wind–speed in the lower (upper) atmospheric boundary layer. WRF/Chem captures the frequency of low–level jets well, but overestimates the strength of moderate low–level jets. Data from the four aerosol sites suggest large underestimation of PM10, and NO3 at the remote sites and PM2.5 at the polluted site. Difficulty in capturing the temporal evolution of aerosol concentrations coincides with difficulty in capturing sudden temperature changes, underestimation of inversion–strengths and timing of frontal passages. Errors in PM2.5 concentrations strongly relate to temperature errors.</abstract><pub>Elsevier B.V</pub><doi>10.5094/APR.2011.035</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1309-1042 |
ispartof | Atmospheric pollution research, 2011-07, Vol.2 (3), p.283-299 |
issn | 1309-1042 1309-1042 |
language | eng |
recordid | cdi_proquest_miscellaneous_926900212 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aerosol Aerosol concentration Aerosols Air pollution Atmospheric boundary layer Atmospheric pollution Atmospheric pollution models Atmospheric pollution research Boundary layers High–latitudes Irradiation Low-level jet stream Particle size Particulate atmospheric pollution radiosondes Sea level SODAR Solar irradiation Stable boundary layer Temperature Temperature changes Weather WRF/Chem |
title | Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20WRF/Chem%20to%20simulate%20sub%E2%80%93Arctic%20boundary%20layer%20characteristics%20during%20low%20solar%20irradiation%20using%20radiosonde,%20SODAR,%20and%20surface%20data&rft.jtitle=Atmospheric%20pollution%20research&rft.au=M%C3%B6lders,%20Nicole&rft.date=2011-07-01&rft.volume=2&rft.issue=3&rft.spage=283&rft.epage=299&rft.pages=283-299&rft.issn=1309-1042&rft.eissn=1309-1042&rft_id=info:doi/10.5094/APR.2011.035&rft_dat=%3Cproquest_cross%3E926900212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926900212&rft_id=info:pmid/&rft_els_id=S1309104215304852&rfr_iscdi=true |