Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato
In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or dama...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2011-12, Vol.123 (8), p.1445-1458 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1458 |
---|---|
container_issue | 8 |
container_start_page | 1445 |
container_title | Theoretical and applied genetics |
container_volume | 123 |
creator | Tam, Sheh May Hays, John B. Chetelat, Roger T. |
description | In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (
Solanum lycopersicum
) and the wild relative
S.
lycopersicoides
are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in
S.
lycopersicum
via RNAi-induced silencing of
SlMSH2
and
SlMSH7
or overexpressing dominant negatives of
Arabidopsis
MSH2
(AtMSH2-DN) in an alien substitution line (SL-8) of
S. lycopersicoides
in tomato. We show that certain inhibitions of MMR (RNAi of
SlMSH7
, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of
MSH2
was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the
SlMSH7
-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato. |
doi_str_mv | 10.1007/s00122-011-1679-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_926895625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364198101</galeid><sourcerecordid>A364198101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-5172de9cdf819bf683411cc32ba7fccb1d14594b14671af7b904e8fb07ac2d953</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS1ERZeFD8AFWSDEKWXGcWL7uCptQarKBW5IluPYu6mSONjJod--XmWhEhISpznM782f9wh5g3CBAOJTAkDGCkAssBaq4M_IBnnJCsY4e042AByKSlTsnLxM6R4AWAXlC3LOUArAUmzIzyvvnZ0TDZ6mZZqiS6kb93Q-OPr5bkeHLg1mtgca3WS6SNNDmt1Aw0gPYXChD_uwpNy0YWi60cxd7nQjnUNWhVfkzJs-udenuiU_rq--X34pbr_dfL3c3RaW1zAXFQrWOmVbL1E1vpYlR7S2ZI0R3toGW-SV4g3yWqDxolHAnfQNCGNZq6pySz6uc6cYfi0uzTqfbV3fm9Hl87RitVRVzf6DzI4hlJJl8t1f5H1Y4pjfyFBZZS-lzND7Fdqb3ulu9GGOxh5H6l1Zc1QSs81bgitlY0gpOq-n2A0mPmgEfQxSr0HqHKQ-Bql51rw9rV-awbV_FL-Ty8CHE2CSNb2PZrRdeuK4ECDwOIitXMqtce_i0x__3v4IdI2zvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903500088</pqid></control><display><type>article</type><title>Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Tam, Sheh May ; Hays, John B. ; Chetelat, Roger T.</creator><creatorcontrib>Tam, Sheh May ; Hays, John B. ; Chetelat, Roger T.</creatorcontrib><description>In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (
Solanum lycopersicum
) and the wild relative
S.
lycopersicoides
are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in
S.
lycopersicum
via RNAi-induced silencing of
SlMSH2
and
SlMSH7
or overexpressing dominant negatives of
Arabidopsis
MSH2
(AtMSH2-DN) in an alien substitution line (SL-8) of
S. lycopersicoides
in tomato. We show that certain inhibitions of MMR (RNAi of
SlMSH7
, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of
MSH2
was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the
SlMSH7
-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-011-1679-4</identifier><identifier>PMID: 21870137</identifier><identifier>CODEN: THAGA6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agriculture ; Alleles ; Arabidopsis ; Biochemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Botanical research ; Cell division ; Chromosomes ; Chromosomes, Plant - genetics ; Classical genetics, quantitative genetics, hybrids ; Crosses, Genetic ; Crossing Over, Genetic ; DNA Mismatch Repair - genetics ; DNA repair ; E coli ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Gene Frequency - genetics ; Genes ; Genetic aspects ; Genetic engineering ; Genetic Linkage ; Genetic recombination ; Genetic research ; Genetics of eukaryotes. Biological and molecular evolution ; Genic rearrangement. Recombination. Transposable element ; Heterozygote ; Homologous Recombination - genetics ; Life Sciences ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Meiosis - genetics ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; Original Paper ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plants, Genetically Modified ; Proteins ; Pteridophyta, spermatophyta ; Reverse Transcriptase Polymerase Chain Reaction ; Solanum ; Tomatoes ; Transgenes - genetics ; Vegetals ; Yeast</subject><ispartof>Theoretical and applied genetics, 2011-12, Vol.123 (8), p.1445-1458</ispartof><rights>Springer-Verlag (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-5172de9cdf819bf683411cc32ba7fccb1d14594b14671af7b904e8fb07ac2d953</citedby><cites>FETCH-LOGICAL-c460t-5172de9cdf819bf683411cc32ba7fccb1d14594b14671af7b904e8fb07ac2d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-011-1679-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-011-1679-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24770714$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21870137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tam, Sheh May</creatorcontrib><creatorcontrib>Hays, John B.</creatorcontrib><creatorcontrib>Chetelat, Roger T.</creatorcontrib><title>Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (
Solanum lycopersicum
) and the wild relative
S.
lycopersicoides
are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in
S.
lycopersicum
via RNAi-induced silencing of
SlMSH2
and
SlMSH7
or overexpressing dominant negatives of
Arabidopsis
MSH2
(AtMSH2-DN) in an alien substitution line (SL-8) of
S. lycopersicoides
in tomato. We show that certain inhibitions of MMR (RNAi of
SlMSH7
, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of
MSH2
was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the
SlMSH7
-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Arabidopsis</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Botanical research</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Crosses, Genetic</subject><subject>Crossing Over, Genetic</subject><subject>DNA Mismatch Repair - genetics</subject><subject>DNA repair</subject><subject>E coli</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Frequency - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic Linkage</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Heterozygote</subject><subject>Homologous Recombination - genetics</subject><subject>Life Sciences</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Meiosis - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>Original Paper</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plants, Genetically Modified</subject><subject>Proteins</subject><subject>Pteridophyta, spermatophyta</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Solanum</subject><subject>Tomatoes</subject><subject>Transgenes - genetics</subject><subject>Vegetals</subject><subject>Yeast</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU9v1DAQxS1ERZeFD8AFWSDEKWXGcWL7uCptQarKBW5IluPYu6mSONjJod--XmWhEhISpznM782f9wh5g3CBAOJTAkDGCkAssBaq4M_IBnnJCsY4e042AByKSlTsnLxM6R4AWAXlC3LOUArAUmzIzyvvnZ0TDZ6mZZqiS6kb93Q-OPr5bkeHLg1mtgca3WS6SNNDmt1Aw0gPYXChD_uwpNy0YWi60cxd7nQjnUNWhVfkzJs-udenuiU_rq--X34pbr_dfL3c3RaW1zAXFQrWOmVbL1E1vpYlR7S2ZI0R3toGW-SV4g3yWqDxolHAnfQNCGNZq6pySz6uc6cYfi0uzTqfbV3fm9Hl87RitVRVzf6DzI4hlJJl8t1f5H1Y4pjfyFBZZS-lzND7Fdqb3ulu9GGOxh5H6l1Zc1QSs81bgitlY0gpOq-n2A0mPmgEfQxSr0HqHKQ-Bql51rw9rV-awbV_FL-Ty8CHE2CSNb2PZrRdeuK4ECDwOIitXMqtce_i0x__3v4IdI2zvg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Tam, Sheh May</creator><creator>Hays, John B.</creator><creator>Chetelat, Roger T.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20111201</creationdate><title>Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato</title><author>Tam, Sheh May ; Hays, John B. ; Chetelat, Roger T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-5172de9cdf819bf683411cc32ba7fccb1d14594b14671af7b904e8fb07ac2d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Arabidopsis</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Botanical research</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Crosses, Genetic</topic><topic>Crossing Over, Genetic</topic><topic>DNA Mismatch Repair - genetics</topic><topic>DNA repair</topic><topic>E coli</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Frequency - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic Linkage</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Heterozygote</topic><topic>Homologous Recombination - genetics</topic><topic>Life Sciences</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Meiosis - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>Original Paper</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plants, Genetically Modified</topic><topic>Proteins</topic><topic>Pteridophyta, spermatophyta</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Solanum</topic><topic>Tomatoes</topic><topic>Transgenes - genetics</topic><topic>Vegetals</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam, Sheh May</creatorcontrib><creatorcontrib>Hays, John B.</creatorcontrib><creatorcontrib>Chetelat, Roger T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam, Sheh May</au><au>Hays, John B.</au><au>Chetelat, Roger T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>123</volume><issue>8</issue><spage>1445</spage><epage>1458</epage><pages>1445-1458</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><coden>THAGA6</coden><abstract>In plant breeding, the ability to manipulate genetic (meiotic) recombination would be beneficial for facilitating gene transfer from wild relatives of crop plants. The DNA mismatch repair (MMR) system helps maintain genetic integrity by correcting base mismatches that arise via DNA synthesis or damage, and antagonizes recombination between homeologous (divergent) DNA sequences. Previous studies have established that the genomes of cultivated tomato (
Solanum lycopersicum
) and the wild relative
S.
lycopersicoides
are substantially diverged (homeologous) such that recombination between their chromosomes is strongly reduced. Here, we report the effects on homeologous recombination of suppressing endogenous MMR genes in
S.
lycopersicum
via RNAi-induced silencing of
SlMSH2
and
SlMSH7
or overexpressing dominant negatives of
Arabidopsis
MSH2
(AtMSH2-DN) in an alien substitution line (SL-8) of
S. lycopersicoides
in tomato. We show that certain inhibitions of MMR (RNAi of
SlMSH7
, AtMSH2-DN) are associated with modest increases in homeologous recombination, ranging from 3.8 to 29.2% (average rate of 17.8%) compared to controls. Unexpectedly, only the AtMSH2-DN proteins but not RNAi-induced silencing of
MSH2
was found to increase homeologous recombination. The ratio of single to double crossovers (SCO:DCO ratio) decreased by approximately 50% in progeny of the AtMSH2-DN parents. An increase in the frequency of heterozygous SL-8 plants was also observed in the progeny of the
SlMSH7
-RNAi parents. Our findings may contribute to acceleration of introgression in cultivated tomato.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21870137</pmid><doi>10.1007/s00122-011-1679-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2011-12, Vol.123 (8), p.1445-1458 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_926895625 |
source | MEDLINE; SpringerLink Journals |
subjects | Agriculture Alleles Arabidopsis Biochemistry Biological and medical sciences Biomedical and Life Sciences Biotechnology Botanical research Cell division Chromosomes Chromosomes, Plant - genetics Classical genetics, quantitative genetics, hybrids Crosses, Genetic Crossing Over, Genetic DNA Mismatch Repair - genetics DNA repair E coli Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Gene Frequency - genetics Genes Genetic aspects Genetic engineering Genetic Linkage Genetic recombination Genetic research Genetics of eukaryotes. Biological and molecular evolution Genic rearrangement. Recombination. Transposable element Heterozygote Homologous Recombination - genetics Life Sciences Lycopersicon esculentum Lycopersicon esculentum - genetics Meiosis - genetics Molecular and cellular biology Molecular genetics Mutagenesis. Repair Original Paper Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Plants, Genetically Modified Proteins Pteridophyta, spermatophyta Reverse Transcriptase Polymerase Chain Reaction Solanum Tomatoes Transgenes - genetics Vegetals Yeast |
title | Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20suppressing%20the%20DNA%20mismatch%20repair%20system%20on%20homeologous%20recombination%20in%20tomato&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Tam,%20Sheh%20May&rft.date=2011-12-01&rft.volume=123&rft.issue=8&rft.spage=1445&rft.epage=1458&rft.pages=1445-1458&rft.issn=0040-5752&rft.eissn=1432-2242&rft.coden=THAGA6&rft_id=info:doi/10.1007/s00122-011-1679-4&rft_dat=%3Cgale_proqu%3EA364198101%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903500088&rft_id=info:pmid/21870137&rft_galeid=A364198101&rfr_iscdi=true |