Buffer-regulated biocorrosion of pure magnesium

Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2012-02, Vol.23 (2), p.283-291
Hauptverfasser: Kirkland, Nicholas T., Waterman, Jay, Birbilis, Nick, Dias, George, Woodfield, Tim B. F., Hartshorn, Richard M., Staiger, Mark P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 283
container_title Journal of materials science. Materials in medicine
container_volume 23
creator Kirkland, Nicholas T.
Waterman, Jay
Birbilis, Nick
Dias, George
Woodfield, Tim B. F.
Hartshorn, Richard M.
Staiger, Mark P.
description Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO 2 atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.
doi_str_mv 10.1007/s10856-011-4517-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926894126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926894126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWj9-gBcpguhl7Uyyk2yOWvyCghc9h3Q3KSv7UZPuof_eSKuCoKcc3mfezDyMnSJcI4CaRISCZAaIWU6osvUOGyEpkeWFKHbZCDSplAg4YIcxvgFAron22QHnqAG1HLHJ7eC9C1lwi6GxK1eN53Vf9iH0se67ce_HyyG4cWsXnYv10B6zPW-b6E627xF7vb97mT5ms-eHp-nNLCtzSatMkgSCucWcZNqlmqtCVSAK7sFpKEqpgYMj5wvSFSJVZa6EVsKDgpSjOGKXm95l6N8HF1emrWPpmsZ2rh-i0VwWOkcuE3n1L4lSoZC5UCKh57_Qt34IXboj9XFCwYknCDdQmRzE4LxZhrq1YW0QzKd2s9Fuknbzqd2s08zZtniYt676nvjynICLLWBjaRsfbFfW8YcjUlponTi-4WKKuoULPxv-_fsHRduW-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922513252</pqid></control><display><type>article</type><title>Buffer-regulated biocorrosion of pure magnesium</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kirkland, Nicholas T. ; Waterman, Jay ; Birbilis, Nick ; Dias, George ; Woodfield, Tim B. F. ; Hartshorn, Richard M. ; Staiger, Mark P.</creator><creatorcontrib>Kirkland, Nicholas T. ; Waterman, Jay ; Birbilis, Nick ; Dias, George ; Woodfield, Tim B. F. ; Hartshorn, Richard M. ; Staiger, Mark P.</creatorcontrib><description>Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO 2 atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-011-4517-y</identifier><identifier>PMID: 22190196</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Biocompatibility ; Biocompatible Materials - chemistry ; Biodegradable materials ; Biodegradation, Environmental ; Biological and medical sciences ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Body Fluids ; Buffers ; Carbon - chemistry ; Carbonates ; Ceramics ; Chemistry and Materials Science ; Composites ; Corrosion ; Cost-Benefit Analysis ; Culture Media - chemistry ; Exact sciences and technology ; Gases ; Glass ; Humans ; Hydrogen - chemistry ; Hydrogen-Ion Concentration ; In vitro testing ; Magnesium ; Magnesium - chemistry ; Magnesium base alloys ; Materials Science ; Materials Testing ; Medical sciences ; Metals. Metallurgy ; Microscopy, Electron, Scanning - methods ; Natural Materials ; Orthopedics ; Plasma - metabolism ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Spectroscopy, Fourier Transform Infrared - methods ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Thin Films ; Transplants &amp; implants</subject><ispartof>Journal of materials science. Materials in medicine, 2012-02, Vol.23 (2), p.283-291</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</citedby><cites>FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-011-4517-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-011-4517-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25579399$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22190196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirkland, Nicholas T.</creatorcontrib><creatorcontrib>Waterman, Jay</creatorcontrib><creatorcontrib>Birbilis, Nick</creatorcontrib><creatorcontrib>Dias, George</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Hartshorn, Richard M.</creatorcontrib><creatorcontrib>Staiger, Mark P.</creatorcontrib><title>Buffer-regulated biocorrosion of pure magnesium</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO 2 atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradable materials</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Body Fluids</subject><subject>Buffers</subject><subject>Carbon - chemistry</subject><subject>Carbonates</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Cost-Benefit Analysis</subject><subject>Culture Media - chemistry</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Glass</subject><subject>Humans</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>In vitro testing</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Metals. Metallurgy</subject><subject>Microscopy, Electron, Scanning - methods</subject><subject>Natural Materials</subject><subject>Orthopedics</subject><subject>Plasma - metabolism</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><subject>Transplants &amp; implants</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWj9-gBcpguhl7Uyyk2yOWvyCghc9h3Q3KSv7UZPuof_eSKuCoKcc3mfezDyMnSJcI4CaRISCZAaIWU6osvUOGyEpkeWFKHbZCDSplAg4YIcxvgFAron22QHnqAG1HLHJ7eC9C1lwi6GxK1eN53Vf9iH0se67ce_HyyG4cWsXnYv10B6zPW-b6E627xF7vb97mT5ms-eHp-nNLCtzSatMkgSCucWcZNqlmqtCVSAK7sFpKEqpgYMj5wvSFSJVZa6EVsKDgpSjOGKXm95l6N8HF1emrWPpmsZ2rh-i0VwWOkcuE3n1L4lSoZC5UCKh57_Qt34IXboj9XFCwYknCDdQmRzE4LxZhrq1YW0QzKd2s9Fuknbzqd2s08zZtniYt676nvjynICLLWBjaRsfbFfW8YcjUlponTi-4WKKuoULPxv-_fsHRduW-g</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kirkland, Nicholas T.</creator><creator>Waterman, Jay</creator><creator>Birbilis, Nick</creator><creator>Dias, George</creator><creator>Woodfield, Tim B. F.</creator><creator>Hartshorn, Richard M.</creator><creator>Staiger, Mark P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120201</creationdate><title>Buffer-regulated biocorrosion of pure magnesium</title><author>Kirkland, Nicholas T. ; Waterman, Jay ; Birbilis, Nick ; Dias, George ; Woodfield, Tim B. F. ; Hartshorn, Richard M. ; Staiger, Mark P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradable materials</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Body Fluids</topic><topic>Buffers</topic><topic>Carbon - chemistry</topic><topic>Carbonates</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Cost-Benefit Analysis</topic><topic>Culture Media - chemistry</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Glass</topic><topic>Humans</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>In vitro testing</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Metals. Metallurgy</topic><topic>Microscopy, Electron, Scanning - methods</topic><topic>Natural Materials</topic><topic>Orthopedics</topic><topic>Plasma - metabolism</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkland, Nicholas T.</creatorcontrib><creatorcontrib>Waterman, Jay</creatorcontrib><creatorcontrib>Birbilis, Nick</creatorcontrib><creatorcontrib>Dias, George</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Hartshorn, Richard M.</creatorcontrib><creatorcontrib>Staiger, Mark P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkland, Nicholas T.</au><au>Waterman, Jay</au><au>Birbilis, Nick</au><au>Dias, George</au><au>Woodfield, Tim B. F.</au><au>Hartshorn, Richard M.</au><au>Staiger, Mark P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buffer-regulated biocorrosion of pure magnesium</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>23</volume><issue>2</issue><spage>283</spage><epage>291</epage><pages>283-291</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO 2 atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22190196</pmid><doi>10.1007/s10856-011-4517-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2012-02, Vol.23 (2), p.283-291
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_926894126
source MEDLINE; SpringerLink Journals
subjects Alloys
Applied sciences
Biocompatibility
Biocompatible Materials - chemistry
Biodegradable materials
Biodegradation, Environmental
Biological and medical sciences
Biomaterials
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedical materials
Body Fluids
Buffers
Carbon - chemistry
Carbonates
Ceramics
Chemistry and Materials Science
Composites
Corrosion
Cost-Benefit Analysis
Culture Media - chemistry
Exact sciences and technology
Gases
Glass
Humans
Hydrogen - chemistry
Hydrogen-Ion Concentration
In vitro testing
Magnesium
Magnesium - chemistry
Magnesium base alloys
Materials Science
Materials Testing
Medical sciences
Metals. Metallurgy
Microscopy, Electron, Scanning - methods
Natural Materials
Orthopedics
Plasma - metabolism
Polymer Sciences
Regenerative Medicine/Tissue Engineering
Spectroscopy, Fourier Transform Infrared - methods
Surfaces and Interfaces
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
Thin Films
Transplants & implants
title Buffer-regulated biocorrosion of pure magnesium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buffer-regulated%20biocorrosion%20of%20pure%20magnesium&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Kirkland,%20Nicholas%20T.&rft.date=2012-02-01&rft.volume=23&rft.issue=2&rft.spage=283&rft.epage=291&rft.pages=283-291&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-011-4517-y&rft_dat=%3Cproquest_cross%3E926894126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922513252&rft_id=info:pmid/22190196&rfr_iscdi=true