Buffer-regulated biocorrosion of pure magnesium
Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibil...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2012-02, Vol.23 (2), p.283-291 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 283 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 23 |
creator | Kirkland, Nicholas T. Waterman, Jay Birbilis, Nick Dias, George Woodfield, Tim B. F. Hartshorn, Richard M. Staiger, Mark P. |
description | Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO
2
atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible. |
doi_str_mv | 10.1007/s10856-011-4517-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926894126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926894126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWj9-gBcpguhl7Uyyk2yOWvyCghc9h3Q3KSv7UZPuof_eSKuCoKcc3mfezDyMnSJcI4CaRISCZAaIWU6osvUOGyEpkeWFKHbZCDSplAg4YIcxvgFAron22QHnqAG1HLHJ7eC9C1lwi6GxK1eN53Vf9iH0se67ce_HyyG4cWsXnYv10B6zPW-b6E627xF7vb97mT5ms-eHp-nNLCtzSatMkgSCucWcZNqlmqtCVSAK7sFpKEqpgYMj5wvSFSJVZa6EVsKDgpSjOGKXm95l6N8HF1emrWPpmsZ2rh-i0VwWOkcuE3n1L4lSoZC5UCKh57_Qt34IXboj9XFCwYknCDdQmRzE4LxZhrq1YW0QzKd2s9Fuknbzqd2s08zZtniYt676nvjynICLLWBjaRsfbFfW8YcjUlponTi-4WKKuoULPxv-_fsHRduW-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922513252</pqid></control><display><type>article</type><title>Buffer-regulated biocorrosion of pure magnesium</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kirkland, Nicholas T. ; Waterman, Jay ; Birbilis, Nick ; Dias, George ; Woodfield, Tim B. F. ; Hartshorn, Richard M. ; Staiger, Mark P.</creator><creatorcontrib>Kirkland, Nicholas T. ; Waterman, Jay ; Birbilis, Nick ; Dias, George ; Woodfield, Tim B. F. ; Hartshorn, Richard M. ; Staiger, Mark P.</creatorcontrib><description>Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO
2
atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-011-4517-y</identifier><identifier>PMID: 22190196</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Biocompatibility ; Biocompatible Materials - chemistry ; Biodegradable materials ; Biodegradation, Environmental ; Biological and medical sciences ; Biomaterials ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Body Fluids ; Buffers ; Carbon - chemistry ; Carbonates ; Ceramics ; Chemistry and Materials Science ; Composites ; Corrosion ; Cost-Benefit Analysis ; Culture Media - chemistry ; Exact sciences and technology ; Gases ; Glass ; Humans ; Hydrogen - chemistry ; Hydrogen-Ion Concentration ; In vitro testing ; Magnesium ; Magnesium - chemistry ; Magnesium base alloys ; Materials Science ; Materials Testing ; Medical sciences ; Metals. Metallurgy ; Microscopy, Electron, Scanning - methods ; Natural Materials ; Orthopedics ; Plasma - metabolism ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Spectroscopy, Fourier Transform Infrared - methods ; Surfaces and Interfaces ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Thin Films ; Transplants & implants</subject><ispartof>Journal of materials science. Materials in medicine, 2012-02, Vol.23 (2), p.283-291</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</citedby><cites>FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-011-4517-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-011-4517-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25579399$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22190196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirkland, Nicholas T.</creatorcontrib><creatorcontrib>Waterman, Jay</creatorcontrib><creatorcontrib>Birbilis, Nick</creatorcontrib><creatorcontrib>Dias, George</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Hartshorn, Richard M.</creatorcontrib><creatorcontrib>Staiger, Mark P.</creatorcontrib><title>Buffer-regulated biocorrosion of pure magnesium</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO
2
atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradable materials</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Body Fluids</subject><subject>Buffers</subject><subject>Carbon - chemistry</subject><subject>Carbonates</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Cost-Benefit Analysis</subject><subject>Culture Media - chemistry</subject><subject>Exact sciences and technology</subject><subject>Gases</subject><subject>Glass</subject><subject>Humans</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>In vitro testing</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Metals. Metallurgy</subject><subject>Microscopy, Electron, Scanning - methods</subject><subject>Natural Materials</subject><subject>Orthopedics</subject><subject>Plasma - metabolism</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><subject>Surfaces and Interfaces</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thin Films</subject><subject>Transplants & implants</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWj9-gBcpguhl7Uyyk2yOWvyCghc9h3Q3KSv7UZPuof_eSKuCoKcc3mfezDyMnSJcI4CaRISCZAaIWU6osvUOGyEpkeWFKHbZCDSplAg4YIcxvgFAron22QHnqAG1HLHJ7eC9C1lwi6GxK1eN53Vf9iH0se67ce_HyyG4cWsXnYv10B6zPW-b6E627xF7vb97mT5ms-eHp-nNLCtzSatMkgSCucWcZNqlmqtCVSAK7sFpKEqpgYMj5wvSFSJVZa6EVsKDgpSjOGKXm95l6N8HF1emrWPpmsZ2rh-i0VwWOkcuE3n1L4lSoZC5UCKh57_Qt34IXboj9XFCwYknCDdQmRzE4LxZhrq1YW0QzKd2s9Fuknbzqd2s08zZtniYt676nvjynICLLWBjaRsfbFfW8YcjUlponTi-4WKKuoULPxv-_fsHRduW-g</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kirkland, Nicholas T.</creator><creator>Waterman, Jay</creator><creator>Birbilis, Nick</creator><creator>Dias, George</creator><creator>Woodfield, Tim B. F.</creator><creator>Hartshorn, Richard M.</creator><creator>Staiger, Mark P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120201</creationdate><title>Buffer-regulated biocorrosion of pure magnesium</title><author>Kirkland, Nicholas T. ; Waterman, Jay ; Birbilis, Nick ; Dias, George ; Woodfield, Tim B. F. ; Hartshorn, Richard M. ; Staiger, Mark P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-656050ba1456838db787d0382f0e908c69020e5ef859d115dc473973f07090813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradable materials</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Body Fluids</topic><topic>Buffers</topic><topic>Carbon - chemistry</topic><topic>Carbonates</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Cost-Benefit Analysis</topic><topic>Culture Media - chemistry</topic><topic>Exact sciences and technology</topic><topic>Gases</topic><topic>Glass</topic><topic>Humans</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>In vitro testing</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Metals. Metallurgy</topic><topic>Microscopy, Electron, Scanning - methods</topic><topic>Natural Materials</topic><topic>Orthopedics</topic><topic>Plasma - metabolism</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><topic>Surfaces and Interfaces</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thin Films</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkland, Nicholas T.</creatorcontrib><creatorcontrib>Waterman, Jay</creatorcontrib><creatorcontrib>Birbilis, Nick</creatorcontrib><creatorcontrib>Dias, George</creatorcontrib><creatorcontrib>Woodfield, Tim B. F.</creatorcontrib><creatorcontrib>Hartshorn, Richard M.</creatorcontrib><creatorcontrib>Staiger, Mark P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkland, Nicholas T.</au><au>Waterman, Jay</au><au>Birbilis, Nick</au><au>Dias, George</au><au>Woodfield, Tim B. F.</au><au>Hartshorn, Richard M.</au><au>Staiger, Mark P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buffer-regulated biocorrosion of pure magnesium</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>23</volume><issue>2</issue><spage>283</spage><epage>291</epage><pages>283-291</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO
2
atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>22190196</pmid><doi>10.1007/s10856-011-4517-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2012-02, Vol.23 (2), p.283-291 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_926894126 |
source | MEDLINE; SpringerLink Journals |
subjects | Alloys Applied sciences Biocompatibility Biocompatible Materials - chemistry Biodegradable materials Biodegradation, Environmental Biological and medical sciences Biomaterials Biomedical engineering Biomedical Engineering and Bioengineering Biomedical materials Body Fluids Buffers Carbon - chemistry Carbonates Ceramics Chemistry and Materials Science Composites Corrosion Cost-Benefit Analysis Culture Media - chemistry Exact sciences and technology Gases Glass Humans Hydrogen - chemistry Hydrogen-Ion Concentration In vitro testing Magnesium Magnesium - chemistry Magnesium base alloys Materials Science Materials Testing Medical sciences Metals. Metallurgy Microscopy, Electron, Scanning - methods Natural Materials Orthopedics Plasma - metabolism Polymer Sciences Regenerative Medicine/Tissue Engineering Spectroscopy, Fourier Transform Infrared - methods Surfaces and Interfaces Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Thin Films Transplants & implants |
title | Buffer-regulated biocorrosion of pure magnesium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buffer-regulated%20biocorrosion%20of%20pure%20magnesium&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Kirkland,%20Nicholas%20T.&rft.date=2012-02-01&rft.volume=23&rft.issue=2&rft.spage=283&rft.epage=291&rft.pages=283-291&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-011-4517-y&rft_dat=%3Cproquest_cross%3E926894126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922513252&rft_id=info:pmid/22190196&rfr_iscdi=true |